ICOM 4035 – Fall 2002 – Exam # 3
Name: ____________________________ Section: ___________

ICOM 4035 – Data Structures

Exam III
November 25, 2002

Name:

Student Number:

Section: _____________________________

Instructions:

1. Write your name on all pages of this exam.

2. You have two hours to complete this exam. Use your time wisely.

3. This exam is worth 100 points, but it contains six problems totaling 110 points. Do as many problems as you can.

4. Read each question carefully, and show all the work you used to generate your answer.

5. To receive partial credit, you must show all the work you used to generate your answer.

GOOD LUCK!

SCORE

	1
	/20

	2
	/15

	3
	/10

	4
	/15

	5
	/30

	6
	/20

	TOTAL
	/100

Problem 1. (20 points) Understanding of the Binary Search Tree
Use the following Binary Search Tree T, storing integers, to answer the following questions:

[image: image1.emf]Max

Jil Ned

Bob

Ken

Mel Ron

Joe

T

Tom Rex

a) (5 pts) What is the depth of the node Joe?
b) (5pts) What is the path that contains both Rex and Max?

Problem 1 (Continuation)

c) (5 pts) Draw the resulting BST after applying the operation T.insert(Jil) to the tree T.
d) (5 pts) Draw the resulting BST after applying the operation T.delete(Ned) to the original tree T.

(NOTE: Assume the operation in b) was not executed!)
Problem 2. (10 points) True or false about general course concepts
Use the Binary Search Tree T from problem 1 to determine whether each of the following statements is true or false. For those that you declare as false, you must explain your answer.

a) (5 pts) In a pre-order tree traversal of tree T, the nodes will be visited in the following order: Max, Jil, Bob, Ken, Joe, Mel, Ned, Ron, Rex, Tom.

b) (5 pts) In a post-order tree traversal of tree T, the nodes will be visited in the following order: Bob, Joe, Ken, Jil, Mel, Rex, Tom, Ron, Ned, Max.
Problem 2. (Continuation)
c) (5pts) If we perform the operation T.insert(Joe) on the tree T from problem 1, then the in-order traversal of the tree will be:

Bob, Jil, Joe, Ken, Joe, Max, Mel, Ned, Rex, Ron, Tom.
Problem 3. (10 pts) Big-O notation

Use Big-O notation to determine the complexity of the running time for each of the following code fragments. Briefly explain you answer.

a) (5 pts)

// Assume BST definition as in project 3
template <typename BSTData, typename Key>
void BinarySarchTree<BSTData,Key>::print_tree
(BSTNode<BSTData> *node) const {

if ((node == NULL) || (node != NULL)){

return;

}

else {

print_tree(node->left_child);

print_tree(node->right_child);

return;

}

}
b) (5 pts)

// assume stack implementation using an array

// s_elements – elements of the stack

// s_size – number of elements in the stack

template <typename Item>

int stack<Item>::count_copies(const Item& obj) const {

int count = 0, i = 0;

for (i=0; i < s_size; ++i){

if (s_elements[i] == obj){

++count;

}

}

return count;

}

Problem 4. (15 points) Understanding of Binary Search Tree Container Class.
Trace the execution of the following operations on an instance of a Binary Search Tree container class (as in project 4) of string. Write your answer on the next page of this exam.
BinarySearchTree<int,int>;

T.insert(5);
T.insert(5);

T.erase(5);

T.insert(3);

T.insert(-10);

T.insert(8);

T.insert(12);

T.erase(5);

Pre_order_Iterator<int,int> = T.find(8);

cout << T.height << endl;

T.insert(3);

T.erase(-2);

T.insert(11);

T.erase(3);

Problem 4. (Continuation)
Problem 5. (30 points) Usage of the Binary Search, Stacks and Queues.
. With this information
a) (10 pts) A Binary Search Tree imposes an order on the elements it stores. Therefore a binary, search tree can be used to help sort data Write a function sort() that sorts an array of data. The input to the function is an array of data and the length of array. The function returns a queue containing the stored data.
Hint: Think about the in-order iterator for BST.

// returns a queue with the elements in array in sorted order
template <typename Item, typename Key>
Queue<Item> sort(Item data[], int data_len){
Problem 5. (Continuation)
b) (10 pts) Repeat exercise 5.a but this time the function sort() must returns a stack with the elements in sorted order. That is, by calling top() an pop() successively, we get the elements in the array in sorted order.

// returns a stack with the elements in array in sorted order

template <typename Item, typename Key>
Stack<Item> sort(Item data[], int data_len){

Problem 5. (Continuation)
c) (10pts) Write a function bst_union()computes the union of a collection of Binary Search Trees (BST). The function receives an array containing the Binary Search Trees, and the length of the array. It returns a new Binary Search Tree that contains the union of all tree (without duplicate elements).
template <typename Item, typename Key>

BinarySearchTree<Item,Key>
bst_union(BinarySearchTree<Item,Key>[] forest,int forest_len){
Problem 6. (20 points) Understanding of Lists and Project number 2.
Use the interfaces classes List and Scheduler from project number 2 of this course to answer the following questions.
a) (10 pts) Write the function find_conflicts() which returns a list with the scheduled events that conflict with a new event E. The function receives as parameter the event E to be searched for conflicts. It returns the list of events that conflict with event E.
List<Event> scheduler::find_conflicts(const Event& E) const{
Problem 6. (Continuation)

b) (10 pts) Write a function clear_after() which erases all the events that occur after given event E, and returns the number of events erased. The function receives as parameter the event E, and returns the number of events erased.
int scheduler::clear_after(const Event& E) const{

PAGE
3

_1099649609.ppt

Max

Jil

Ned

Bob

Ken

Mel

Ron

Joe

T

Tom

Rex

