ICOM 4035 – Fall 2002 – Final Exam
Name: ____________________________ Section: ___________

ICOM 4035 – Data Structures

Final Exam

December 10, 2002

Name:

Student Number:

Section: _____________________________

Instructions:

1. Write your name on all pages of this exam.

2. You have two hours to complete this exam. Use your time wisely.

3. This exam is worth 100 points, but it contains six problems totaling 110 points. Do as many problems as you can.

4. Read each question carefully, and show all the work you used to generate your answer.

5. To receive partial credit, you must show all the work you used to generate your answer.

GOOD LUCK!

SCORE

	1
	/15

	2
	/10

	3
	/15

	4
	/20

	5
	/20

	6
	/30

	7
	/10

	TOTAL
	/100

Problem 1. (15 pts) True or false about general course concepts.

Determine whether each of the following statements is true or false. For those that you declare as false, you must explain your answer.

a) (5pts) When implementing a hash table, if we choose a bad hash function we might end up with many of the elements hashing to a given bucket, thus degrading the performance of the structure.
b) (5pts) Using a hash table, we can write a function that prints all the elements in a Bag in time O(1).
Problem 1 (Continuation)

c) One difference between the copy constructor and the copy assignment operator is that the copy constructor is called to create a new object instance for the first time from an existing value, while the copy assignment is used to modify an existing object instance with a new value.
Problem 2. (10 pts) Computational Complexity and Big-O Notation

Use Big-O notation to determine the complexity of the running time for each of the following code fragments. Briefly explain you answer.
a) (5pts)
void list_array_print(List<string> name_lists[], int len){

for (int i=0; i < len; ++i){

for(List_Iterator<string>iter= name_lists[i].first();

 iter.has_data(); iter.next()){

cout << iter.get_data() << endl;

}

}

}

b) (5pts)

template <typename BSTNodePtr, typename Key>
int count_nodes_aux(BSTNodePtr node){

if (node == NULL){

return 0;

}

else {

return 1 + count_nodes_aux(node->left_child) +

count_nodes_aux(node->right_child);

}

}
Problem 3. (15 pts) Understanding of the Linked List container class
Consider the following set of operations on an instance of a sorted circular doubly-linked list as used in projects 2 and 3, which was implemented by class List.
1. List<string> L;

2. L.insert(“Tim”);

3. L.insert(“Jil”);

4. L.insert(“Jil”);

5. L.erase(“Jil”);

6. L.insert(“Bob”);

7. L.insert(“Lil”);

8. L.insert(“Ron”);
9. L.erase(“Ana”);

10.L.insert(“Ned”);

Using this information, answer the following questions:

a) (5pts) Draw the resulting List after completing operation number 10.
Problem 3 (continuation)
b) (5pts) Draw the resulting List if we apply operation L.erase(“Lil”) after operation number 10.
c) (5pts) Draw the resulting List if we apply operation T.insert(“Zed”) after operation number 10.
Problem 4. (20 pts) Understanding of Sorted Circular Linked List Container Class
Using the interface for the Sorted Circular Doubly Linked List Container class, as defined in projects 2 and 3, answer the following questions:

a) (10 pts) Write a non-member function merge_lists() which combines a group of N sorted circular lists into one sorted circular list. The function receives two parameters: a) an array of sorted circular lists, and b) the length of the array. The function returns a new sorted circular list containing all the elements in the parameter lists.
template <typename Item>

List<Item> merge_lists(List<Item> the_lists[], int len){
Problem 4 (continuation)
b) (10 pts) Write a non-member function split_list() which divides a list into two pieces according to the value of an item K. The function receives four parameters:
a) target – the original list
b) K – the element that is the pivot for splitting the list
c) piece1 – list containing all elements that are less or equal than K.
d) piece2 – list containing all elements that are greater than K.
template<typename Item>

void split_list(const List<Item>& target, const Item& K,

 List<Item>& piece1, List<Item>& piece2>{

Problem 5 (20 pts) Understanding of the Stack Container Class
Using the array-based implementation of a stack container class, as defined in class, answer the following questions.

a) (10 pts) Write a member function replace() which replaces all occurrences of an element target with a new element new_val. The function returns the number of occurrences changed.
Problem 5(Continuation)

b) (10 pts) Write a member function multi_top() which returns an array containing the first N elements in the stack. If there are not enough elements in the stack, the function will copy as many as possible. A variable called res_len will store the actual number of elements copied to the array. The function must allocate memory for this new array. The function receives two parameters:
a. N – the number of elements to be searched (passed by value)

b. res_len – number of elements copied to the array (passed by reference)

The function returns the array with the first N elements in the stack (or as many as possible), and they must appear in the array in the relative order as in the stack.
Problem 6 (30 pts) Understanding of Binary Search Trees and Data Manager Class.

Based on the implementation of the Binary Search Tree class and the Data Manager Class implemented in project 3, answer the following three questions:

a) (10 pts) Write a member function called depth_count() which returns the number of nodes that are at depth D in the tree. Recall that the depth of a node N is the number of edges in the path from the node N to the root. As a base case, the depth of the root is zero.
NOTE: You must implement any auxiliary function that you use!

template <typename BSTData, typename Key>
int BinarySearchTree<BSTData, Key>::depth_count(int D){
Problem 6 (continuation)

b) (10 pts) Write a member function called print_descendants() which prints all the descendants of a node N with key K in the Binary Search Tree. The printing must be in-order. If more than one copy of the node N exists, the function will start printing from the first copy on. The node N with key K must be the first node to be printed.
NOTE: You can assume must implement any auxiliary function that you use!

template <typename BSTData, typename Key>

void BinarySearchTree<BSTData, Key>::print_descendants
(const Key& K, ostream& out){

Problem 6 (continuation)

c) (10 pts) Extend the class DataManager from project 3 by adding a new function find_pairs() which returns a list with the movies in which a pair of actors appear in the cast list. The arguments are the names of the two actors, and the resulting list will have movies in which the both of these actors appeared. You can assume the existence of the methods originally defined for class DataManager.
NOTE: You must implement any auxiliary function that you use!
List<Movie> DataManager::find_pairs(const Name& actor1,

 const Name& actor2){
Problem 7 (10 pts) Class Evaluation
What aspect of the class you liked the most? (5 pts)

What aspect of the class you disliked the most? (5 pts)

PAGE
1

