[image: image1.png]

Department of Electrical and Computer Engineering
University of Puerto Rico

Mayagüez Campus
ICOM 4035 – Data Structures (CS2)

Spring 2003
Laboratory 1: Set Container Class

1. Objectives
1. Practice the use of operator overloading

2. Learn about the C++ STL vector container class.

3. Introduction to dynamic arrays

2. Overview

In this laboratory exercise you will implement a container class called the set. This class will implement most of the operations that are defined for the ADT set. These operations include set union, intersection, and differences, as well as operations to insert, find and delete elements from a set. To better illustrate the use of set, you will use your set container class for a small program that keeps track of the names of students currently enrolled in two courses: ICOM 4035 and ICOM 6005.

3. Set Container Class

The set container class will be implemented in a C++ class that has one private member variables called elems. This is shown in Figure 1. This variable is of type vector<value_type>, where value_type is defined to be the type of object being stored in the set. Here vector is a class that implements a dynamic array; that is, an array whose size can be grown on demand. Thus, with the bag container class the size of the array to store elements was fixed. However, by using vector we can grow the size of the array as needed to make room for more elements. Notice that the class vector takes care of growing the array automatically. Moreover the operator [] have been overloaded, so the expression elems[i] will give the element at position i in the vector (dynamic array) elems. Once again, notice the declaration of the type for elems: the type of the data to be stored in the vector is passed as a sort of parameter within the < >. We shall see more about this when we discuss template functions and template classes.
[image: image2.png]

Figure 1: Organization of the set container class
4. Set Operations

· Constructor:
set::set(init_capacity)

Creates a new set with a given initial capacity. The set can be grown on demand thanks to the vector container class.

· Union-Assignment operator

const set& set::operator+=(const set& b)

Computes the union of this set with set b, and makes the result the new value for this set.

· Difference-Assignment operator

const set& set::operator-=(const set& b)

Computes the difference of this set with set b, and makes the result the new value for this set. Recall that if we have two sets, A,B, the difference of A with respect to B, A-B, is the set of all values in A which are not present in B.

· Find operator

bool set::find(const value_type& obj)const
Returns true if value obj is contained in this set, or false otherwise.

· Insert operator

void set::insert(const value_type& obj) const

Insert a new element obj into the set, but only if the element is not found already in the set (remember that sets do not have duplicates). The new element must be added at the end of the elems dynamic array using the function push_back() from the vector container class.
· Erase operator

bool set::erase(const value_type& obj)

Removes the element obj from the set if it is present. Returns true if the element is found and removed, or false otherwise. If the element to erase is found, it is replaced with the last element in the elems dynamic array (just as in the case of the bag). Then the last element must be erased from elems, and this is done by calling the function pop_back() from the vector container class.
· Size operator

bool set::size() const

Returns the number of elements currently store in the set. This function should simply call the function size() from the vector container class.
· Empty set operator

bool set::empty_set() const

Returns true if this set is the empty set (i.e. has no elements), or false otherwise.

· Ouput operator

ostream& operator<<(ostream& out, const set& b);
Prints all the values in the set b. This function will simply traverse the dynamic array b.elems and print each element. The output format should be in the form:

{obj1 obj2 … objn}

For example, if we a set A={Bob, Tom, Rom}, then the output should be:

{Bob Tom Rom}.
· Union operator

set& operator+(const set& b1, const set&b2)

Computes the union of set b1 with set b2, and returns the result in a new set object.

· Difference operator

set& operator-(const set& b1, const set&b2)

Computes the difference of set b1 with set b2, and returns the result in a new set object.

· Intersection operator

set& operator&(const set& b1, const set&b2)

Computes the intersection of set b1 with set b2, and returns the result in a new set object. Notice that given two sets b1 and b2, their intersection can be computed as follows: result = b2 – (b2 – b1)
5. Application set_test

The application set_test uses the set class to implement a simple program to keep track of the names of the students enrolled in the courses ICOM 4035 and ICOM 6005. This program allows the user to add new names to a given course, remove names from a given course, and print a report indicating students in each course. Test your set container class by using this application to perform the following tasks:

1) Add students Bob, Jil, Ned and Tom to course ICOM 4035.

2) Add students Ned, Ron, Al, Joe and Jil to course ICOM 6005.

3) Print a report

4) Remove student Jil from course ICOM 4035

5) Remove student Ron from course ICOM 6005

6) Print a report

6. Distributions files

The tar file lab1.tar is available for download from the class web page. It contains the following:
· Object.h – declaration of data type for objects to store in the set.

· set.h – declaration of the interface for the set container class.

· set.cpp – implementation of the methods in the interface for the set container class. YOU NEED TO ADD YOUR CODE HERE.

· set_test.cpp – test program for the set container class

· prof_set_test – professor’s version of the completed program

· Makefile – command the compile all the necessary files.
� EMBED MSDraw.1.01 ���

1 7 8

vector

set

_1057345867

