

Department of Electrical and Computer Engineering

University of Puerto Rico
Mayagüez Campus

ICOM 4035 – Data Structures
Spring 2003

Project #4: Movie Database Application using Binary Search Trees

Due Date: 11:59 PM – May 9, 2003

Objectives
1. Understand the design, implementation and use of a binary search tree class container.
2. Gain experience implementing applications using layers of increasing complexity and

fairly complex data structures.
3. Gain further experience with object-oriented programming concepts, specially templates

and iterators.

Overview
You will implement and test an application that acts as main-memory database containing
information about movies. All the records with movie information will be stored in a Binary
Search Tree (BST) container class. The insertion of each movie record will be based on the
movie title. For simplicity we will assume movie titles consisting of either one word, or multiple
words separated by a dash - . For example: Platoon, Alien, Titanic, Jaws-3. The following
diagram illustrates a general level organization of a movies database for these three movies,
when inserted in that order

Platoon

Aliens Titanic

Jaws-3

In reality, each node will not have simply the movie title, but a record that has the following
information:

1. Movie Title
2. Movie year of release
3. Duration of the movie (minutes)
4. Rating of the movie (must be one of NR, G, PG, PG-12, R, NC-17)
5. Linked List with the name of the actors

You will implement the following operations for the movie database application, using the class
called the DataManager:

1. Add movie – add a new movie record to the movie database.
2. Delete movie – deletes a movie record from the movie database.
3. Add cast – adds a new cast member name to a movie
4. Delete cast – deletes a cast member name (if present) from a movie
5. Find movie – finds the information record for a movie
6. Find movies by actor name – finds all movies by a given actor. Returns a new sorted

doubly linked list with them.
7. Find movies by rating – finds all movies with a given rating. Returns a new sorted doubly

linked list with them.
8. Find movies by year – find all movies made in a given year. Returns a new sorted doubly

linked list with them.
9. Find movies by time period – finds all movies in a time period (e.g. 1980-1985). Returns

a new sorted doubly linked list with them.
10. Print movies in order – prints all the movies in the BST sorted order (in-order).

You must implement the DataManager class to store the movies in a Binary Search Tree (BST).

NOTE: You must keep the movies in the proper Binary Search Tree order at all times.
Programs whose Binary Search Tree does not keep the BST order will be considered as not
running. The BST order is a property defined as follows:

 For any node N in the BST, the key of N is greater than the key of all nodes in its left

subtree. Similarly, the key of N is less or equal to the key of all nodes in its right
subtree.

Binary Search Tree Container Class
You must implement a Binary Search Tree (BST) class container to keep the information about
the movie records. The BST is a template that receives two parameter types:

1. BSTData – the object to be stored in the tree. It is assumed by the templates that a
BSTData type will implement a function called get_key() that returns an object of type
DataKey (explained below). In addition, the BSTData data-type must overload the
relational operators = =, !=, <, <=, >, >=. In this project you will use classes Name and
Movie in this role of BSTData. These classes are explained below.

2. Data Key – represents an identifier for the object stored in the tree. It should be returned
from the a call to method get_key().

The Binary Search Tree class container has two private data fields:
1. root– a pointer to the root of the Binary Search Tree (Recall that the root node stores

data!!!).
2. t_size – the number of elements in the tree.

Each node N in the tree has three fields:

1. data - the data in each node is stored in this field.
2. left_child – pointer to the node that is the left child of the node N, and hence, the root of

the left subtree of N.
3. right_child – pointer to the node that is the right child of the node , and hence, the root

of the right subtree of N

When new nodes are inserted, they must be inserted so as to maintain the BST order. Likewise,
when nodes are deleted from the BST, they must be removed so as to maintain the BST order.

The following diagram shows several cases of Binary Search Trees

Empty
BST

One
element
BST

root

Platoon

Aliens Titanic

Jaws-3

Platoonroot

Four
element
BST

NOTE: For Binary Search Tree class container, you MUST follow these guidelines.

1. The erase operator must do an in-place removal of the target node. It cannot copy nodes
to a new tree, skipping the node that you want to delete. Programs that deviate from this
direction will not be considered a running program. The same applies to the usage of any
other data structures (Linkedlist, vector, etc.)

2. The destructor cannot create memory leaks.
3. The copy constructor must create a deep copy of the tree.
4. The insert operation must put a new node in the appropriate order in the BST. If your tree

does not follow the BST order property, your program will not be considered a running
program.

Queue Container Class
You will need a queue to store tree node while executing in-order and pre-order tree traversals to
create iterators. You will implement the queue container class using the toolkit cdlist_node for
doubly linked lists. This time, however, the queue will not be circular. Instead, there will be a
dummy node representing the front of the queue, and another dummy representing the rear of the
queue. All insertions on the queue will be at the rear (in fact, before the rear node). All deletions
will be at the front of the queue. Read the file queue.cpp for more details.

Sorted Circular Doubly Linked List Class Container
You will use your sorted circula doubly linked list class container from project 3, which was
called List. This class was implemented using the cdlist_node toolkit, and the List container
class, implemented in file List.cpp. This data structure will be used for two purposes:

1. Implement the list of actor names in a movie record.
2. Implement the list of movie records resulting from one of the operations to access the

movie database, that is provided by the DataManager class.

You will need to add the following functions to your cdlist_node toolkit:
 /*
 * This method inserts a new element after the node pointed to by
 * argument target pointer.
 * Parameter: obj - new object to be added into the list.
 * Parameter: target_ptr - pointer to a node, the new element will be added
 * after it. This pointer is assumed not NULL.
 */
 template <typename Item>
 void list_insert_after(cdlist_node<Item> *target_ptr, const Item& obj);

 /*
 * Copy a range of elements from one linked list into another linked list.
 * This is a deep copy operation. The functions receives two pointers
 * delimiting the nodes to be copied: src_head_ptr and src_tail_ptr.
 * The function will copy all element in the range:
 * src_head_ptr->get_next() and src_tail_ptr->get_prev().
 *
 * NOTE: The destination list is assumed to be empty!!! All pointers
 * are assumed not NULL.
 * Parameter: src_head_ptr - constant pointer to the node before the
 * first node of source list to be copied.
 * Parameter: src_tail_ptr - constant pointer to the node after the
 * last node of source list to be copied.
 * Parameter: dst_head_ptr - pointer to the head of the target list.
 */
 template <typename Item>
 void list_copy(cdlist_node<Item> *src_head_ptr,
 cdlist_node<Item> *src_tail_ptr,
 cdlist_node<Item> *dst_head_ptr);

 /*
 * Removes all elements between two positions from the list.
 * The functions receives two pointers
 * delimiting the nodes to be removed: src_head_ptr and src_tail_ptr.
 * The function will remove all elements in the range:
 * src_head_ptr->get_next() and src_tail_ptr->get_prev().
 *
 * NOTE: The destination list is assumed to be empty!!! All pointers
 * are assumed not NULL.
 * Parameter: src_head_ptr - constant pointer to the node before the
 * first node of source list to be removed.
 * Parameter: src_tail_ptr - constant pointer to the node after the
 * last node of source list to be removed.
 */
 template <typename Item>
 void list_clear(cdlist_node<Item> *head_ptr,
 cdlist_node<Item> *tail_ptr);

 /*
 * Counts all elements between two positions from the list.
 * The functions receives two pointers
 * delimiting the nodes to be count: src_head_ptr and src_tail_ptr.
 * The function will remove all elements in the range:
 * src_head_ptr->get_next() and src_tail_ptr->get_prev().
 *
 * Parameter: head_ptr - constant pointer to the node before the
 * first node of source list to be counted.
 * Parameter: tail_ptr - constant pointer to the node after the
 * last node of source list to be counted.
 */
 template <typename Item>
 std::size_t list_length(cdlist_node<Item> *head_ptr,
 cdlist_node<Item> *tail_ptr);

NOTE: DataManager must keep the movie database in a Binary Search Tree (BST). The
linked list is only used to throw in results from operations in the movie databases.
Programs that use the linked list to store the movie databases will be considered as not
running.

Name Class
The name class will represent the name of an actor in a movie. It will have two private fields, the
actor’s last name and the actor’s first name. You will be given the C++ code for this class.

Name List Class
The name list class represents a sorted list of names. This classes uses the sorted doubly linked
list to maintain the list of names. You will be given the C++ code for this class. (Except for the
linked list code).

Data Manager
You must implement a Data Manager class that will maintain the Binary Search Tree of movies.
The Data Manager has the BST of movies a private member. The Data Manager provides the
interface to perform all the maintenance operations on the movie database. These operations
were mentioned at the beginning of this document. Read the file DataManager.cpp

Distribution Files
You can go to the class web page and download a tar file containing all the files related with this
project. Just access the link named Projects, and download the sources files associated with the
link: Project #4 – Movie Database with Binary Search Trees.

You implementation will consist of adding C++ code to implement four modules:
cdlist_node.cpp, queue.cpp, BinarySearchTree.cpp and DataManager.cpp. In addition, you must
supply your code for the SDoublyLinkedList class. You will receive all the .h files necessary for
this project. In addition, you will be provided with a main program that uses the DataManager
class, and interacts with the user to ask his/her input on the operations and polynomials to be
evaluated. Finally, you will be given a Makefile with all the commands needed to compile and
submit your project. In summary, you program will consist of the following files:

1. cdlist_node.h – interface for the circular doubly linked list.
2. cdlist_node.cpp – implementation of the circular doubly linked list class node. YOU

MUST IMPLEMENT THE METHODS THAT APPEAR IN THIS FILE.
3. List.h – interface for the List container class.
4. List.cpp – implementation for the List container class as a sorted circular doubly linked

list. YOU MUST IMPLEMENT THE METHODS THAT APPEAR IN THIS FILE.
5. list_test.cpp – small test program for the sorted doubly linked list container.
6. list_test_exp.cpp – template binding declarations for the the list_test_exp.cpp file. DO

NOT MODIFY THIS FILE!!!!!!!!!!!!!!!!SDoublyLinkedList.h – interface for the sorted
doubly linked list.

7. queue.h – interface of the queue class container.

8. queue.cpp – implementation of the queue class container. You will need this class to keep
track of tree nodes during in-order and pre-order tree traversals. YOU MUST
IMPLEMENT THE METHODS THAT APPEAR IN THIS FILE.

9. queue_test.cpp – test program for the queue container class.
10. queue_test_exp.cpp – template binding declarations for the queue_test.cpp.
11. BinarySearchTree.h – interface for the Binary Search Tree class container.
12. BinarySearchTree.cpp – implementation of the Binary Search Tree class container. YOU

MUST IMPLEMENT THE METHODS THAT APPEAR IN THIS FILE.
13. test_bst.cpp – program to test your implementation of the BST.
14. test_bst_exp.cpp – template binding declarations for the the test_bst.cc file. DO NOT

MODIFY THIS FILE!!!!!!!!!!!!!!!!
15. Name.h – interface for an actor name class.
16. Name.cpp – implementation of an actor name class.
17. NameList.h – interface for a list of actor names.
18. NameList.cpp – implementation of the list of actor names.
19. Movie.h – interface for a movie information record class.
20. Movie.cpp – implementation of a movie record.
21. DataManager.h – interface of the data management class for the movie database.
22. DataManager.cpp – implementation of the data management class for the movie

database. YOU MUST IMPLEMENT THE METHODS THAT APPEAR IN THIS FILE.
23. moviedb.h – interface for the movie database application.
24. moviedb.cpp – implementation of the movie database application.
25. explicit.cpp - template binding declarations for the moviedb.cpp file. DO NOT MODIFY

THIS FILE!!!!!!!!!!!!!!!!
26. Makefile – file with the commands to compile and submit you project.
27. test1.in – test input file 1.

NOTE: YOU PROGRAM MUST PASS THIS FILE WITHOUT ERRORS IN ORDER
TO BE CONSIDERED A RUNNING PROGRAM.

28. test1.out – expected output from test input file 1.
29. test2.in – test input file 2.
30. test2.out – expected output from test input file 2.
31. test3.in – test input file 3.
32. test3.out – expected output file from test input file 3.
33. prof_list_test – professor’s version of the list_test program. NOTE: Known to be working

correctly.
34. prof_queue_test – professr’s version of the queue_test program. NOTE: Known to be

working correctly.
35. prof_test_bst – professor’s version of the test_bst program. NOTE: Known to be working

correctly.
36. prof_moviedb – professor’s version of the moviedb program. NOTE: Known to be

working correctly.

Submitting Your Project
To submit your program, type the following commands
 make sdir
 make submit

PROJECT FIRM DUE DATE: 11:59 PM – May 9, 2003.

