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HashHash--Based IndexingBased Indexing
• Read

– New Book: Chapter 11
• Hash methods can be used for index files to support 

efficient searches by equality
– Often require 1 to 2 I/O operation

• Three type of hashing schemes
– Static Hashing
– Extensible Hashing
– Linear Hashing

• In practice, commercial DBMS use hashing indexing 
for temporary calculations
– Aggregation and joins
– Tree-based indices are use as actual indices on relations
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General hashing approachGeneral hashing approach

• Hash File for a relation R has N pages
– Each page is called a bucket
– Buckets are numbered from 0 to N – 1
– If a bucket gets full, an overflow page must be chained to it

• Each record t in R has a search k
– Can be made out of 1 or more attributes
– Ex. Studens(sid, name, login, age, gpa)

• Search key: age attribute

• A hash function is used to map the search key k of a 
record t in R to bucket number [0, N-1]
– Hash function should distribute records uniformly
– Record is searched inside the bucket
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Hash Index (clustered)Hash Index (clustered)
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Hash Index (Hash Index (UnclusteredUnclustered))
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Static Hashing: SchemeStatic Hashing: Scheme
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Static Hashing: IssuesStatic Hashing: Issues

• Number of primary buckets is fixed at file creation
• Hash function maps key to a bucket number
• Typical hash function

– H(k) = a*k + b
– Bucket number = h(k) mod N

• Key can be int or char
– Char – each character is mapped to ASCII, and all value are 

added to get an integer
– Parameters a and b are choose to tune the distribution of 

values (i.e. need to play with this values to get them right …)

• When a primary bucket get full, need to create an 
overflow page and chain it to primary bucket.
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Static hashing: OperationsStatic hashing: Operations

• Search for key value k:
– Hash k to find the bucket, call this bucket B
– Search records in B to kind the one(s) with key k
– If records are found

• clustered, the data record is there: Cost: 1 I/O
• unclustered, need to fetch the actual data page: Cost 2 I/Os

– If records are not found, need to search in overflow pages (if 
there are any)

• Clustered: Cost: (1 + number of pages searched) * I/O
• Unclustered: Cost: (2 + number of pages searched) * I/O

• The more overflow page you have, the worst the 
performance get
– Need to keep overflow pages to 1 or 2, but rarely gets done!
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Static Hashing: Operations (cont.)Static Hashing: Operations (cont.)
• Insert (or Update) record with key k

– Hash k to find bucket, call this bucket B
– If bucket has room

• clustered, write data record there: Cost: 2 I/Os
– Read page, then write it back updated

• unclustered, write record to actual data page: Cost 4 I/Os
– If bucket is full, write to overflow page (create one if needed)

• Clustered: Cost: (2 + number of pages searched) * I/O
• Unclustered: Cost: (4 + number of pages searched) * I/O

• Delete costs are the same, since we need to write 
page back to disk

• Again, overflow pages make performance bad as the 
number of records increases
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Extensible hashingExtensible hashing

• Allows the number of buckets to grow or shrink
• Hash function hashes to slots in a directory

– Slots store the page id of the bucket
– Directory can be kept in buffer pool
– Directory can have hundreds or thousand of slots to buckets

• When a bucket gets full
– Create a new bucket and split records between the new and 

full bucket
• Redistributes the data
• Hash function still works!!!

– Overflow page is need only if you have many duplicate 
records
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Binary Pattern Hashing TechniqueBinary Pattern Hashing Technique
• Hash function will map search key to binary pattern

– Ex h(3.40) = 00110011
• Last d bits in the pattern are taken as bucket number!

– Ex. If d = 2, then h(3.40) = 00110011 will yield bucket 
number 11, which is 4 in binary

• Thus, 3.40 goes to bucket 4

• The number of d of bits used to hash the search key 
is called the depth

• Two types of depths
– Bucket depth 

• Number of bits need to hash value to a given bucket
– File depth

• Largest depth of any bucket
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Example Extensible Hashing IndexExample Extensible Hashing Index
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The use of the depthThe use of the depth

• Depth tells us the number of bits that we need to use 
to pick a bucket 
– Ex. H(4) = 100, d = 2, tell us to use 00 to identify slot. This 

would be slot 00.

• Directory has a global depth
– Used to hash key to proper slot

• Each bucket has a local depth
– Used when bucket need to be slipt

• Let us see what happens when we need to insert the 
value 20 into the hash index
– H(20) = 10100, d =2
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The issue of a full bucketThe issue of a full bucket
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Splitting a bucketSplitting a bucket

• A full bucket gets split into two buckets
– Their directory slots are called corresponding elements

• These buckets have the same hash value at the 
current depth d

• But at depth d + 1, they differ by 1 bit
– one has a 1 at bit position d + 1
– The other has a 0 at bit position d + 1

• Example:
– Bucket A is splint into two buckets: bucket A and bucket A2
– Bucket A , d = 2, has value 00, but at d = 3 becomes 000
– Bucket A2, d = 2, has value 00, but at d = 3 becomes 100
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Splitting a bucket (cont.)Splitting a bucket (cont.)
• The values in the original bucket A and the new value 

to be inserted get distributed into buckets A and A2.
• The hash function now increment the local depth of 

the bucket to be d + 1
• Now, the keys are hashed to buckets using d + 1 bits
• Recall that bucket A had: 4, 12, 32, 16, and d = 2

– We wanted to insert 20
• Now d becomes 3, we get the following hashing:

– 4   = 100 H(4)   = 100
– 12 = 1100 H(12) = 100
– 32 = 100000 H(32) = 000
– 16 = 10000 H(16) = 000
– 20 = 10100 H(20) = 100
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Corresponding elements & bucketsCorresponding elements & buckets
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Expanding the DirectoryExpanding the Directory
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Expanded Hash IndexExpanded Hash Index
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Some IssuesSome Issues

• Some corresponding elements point to the same 
bucket
– This means the bucket has not been split

• Not all splits operations cause the directory to be 
double.

• Each bucket has a local depth 
– If depth of bucket = global depth – 1, then splitting this 

bucket will not cause a doubling in directory

• Doubling only occurs when
– Bucket is full and cannot fit another insertion
– Bucket has same local depth as global depth
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Cost estimates for operationsCost estimates for operations

• Assume directory is in 
buffer pool

• Search for equality
– Clustered – 1 I/O 
– Un-clustered – 2 I/O

• Erase
– Clustered – 2 I/Os
– Unclustered – 4 I/Os

• Insert (No splitting)
– Clustered – 2 I/Os
– Unclustered – 4 I/Os

• Insert (Splitting)
– Clustered – 4 I/Os
– Unclustered – 8 I/Os

• Overflow pages will be 
needed when you have 
lots of values with the 
same search key k
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Tradeoffs of Extensible HashingTradeoffs of Extensible Hashing

• Advantages
– Can gracefully adapt to insertion and deletions
– Limits the number of overflow pages
– Hash function is easy to implement

• No need for complex prime number computations

• Disadvantages
– Directory can grow large when we have billions of records
– Also, when we have skewed data distributions

• Lots of values go to same bucket
• Lots of empty buckets, a few one have all the data
• Overflow pages due to collisions (values that hash to same 

bucket)
– Too much doubly in the size of the directory
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Linear HashingLinear Hashing

• Dynamic hashing technique
– No need for directory
– Limits overflow pages due to collisions
– Splitting of buckets is done in a more lazy fashion

• Idea is to have a family of hash functions
– h0, h1, h2, …
– Each function has a range twice as big as the predecesor

– If hi maps to M buckets, hi+1 maps to 2M buckets
– This is used when more buckets are needed

• Switch from current hi to hi+1 if we need to grow number of 
buckets beyond current M (we double number of buckets 
to 2M)
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Building the family of hash functions Building the family of hash functions 

• General form is
– hi (key) = h(key) mod (2iN)
– h(key) acts as the base function
– h(key) is the same as for extensible hashing

• Looks as the bit pattern in the value

• If N is a power of 2, and d0 is the number of bit to 
represent N, then di gives the number of bits used by 
function hi

– di = d0 + i
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General SchemeGeneral Scheme

• Hash index file as an associated round number
– Called Level

• At round number Level we use hash functions
– hLevel and hLevel + 1

• We keep track of the next bucket to be split
– Buckets are split in a round robin fashion

• Every bucket eventually gets splits …

• Index file has tree types of buckets
– Buckets that were split in this round
– Buckets that are yet to be split
– Buckets created by splits in this round
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Organization of Index Hash FileOrganization of Index Hash File
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Example scenarioExample scenario
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