
ICOM 6005 ICOM 6005 –– Database Management Database Management
Systems DesignSystems Design

Dr. Manuel Rodríguez-Martínez
Electrical and Computer Engineering Department

ICOM 6005 Dr. Manuel Rodriguez Martinez 2

HashHash--Based IndexingBased Indexing
• Read

– New Book: Chapter 11
• Hash methods can be used for index files to support

efficient searches by equality
– Often require 1 to 2 I/O operation

• Three type of hashing schemes
– Static Hashing
– Extensible Hashing
– Linear Hashing

• In practice, commercial DBMS use hashing indexing
for temporary calculations
– Aggregation and joins
– Tree-based indices are use as actual indices on relations

ICOM 6005 Dr. Manuel Rodriguez Martinez 3

General hashing approachGeneral hashing approach

• Hash File for a relation R has N pages
– Each page is called a bucket
– Buckets are numbered from 0 to N – 1
– If a bucket gets full, an overflow page must be chained to it

• Each record t in R has a search k
– Can be made out of 1 or more attributes
– Ex. Studens(sid, name, login, age, gpa)

• Search key: age attribute

• A hash function is used to map the search key k of a
record t in R to bucket number [0, N-1]
– Hash function should distribute records uniformly
– Record is searched inside the bucket

ICOM 6005 Dr. Manuel Rodriguez Martinez 4

Hash Index (clustered)Hash Index (clustered)

$30WIPat1237

$102NYBob123

$5595NYJil121

$52303SFAl4882

$73SJNed8387

$500LABill2381

$4000MIATim81982

$3333NYNed9403

H()

Account
attribute

ICOM 6005 Dr. Manuel Rodriguez Martinez 5

Hash Index (Hash Index (UnclusteredUnclustered))

$30WIPat1237

$102NYBob123

$5595NYJil121

$52303SFAl4882

$73SJNed8387

$500LABill2381

$4000MIATim81982

$3333NYNed9403

H()
NY

NY

NY

LA

WI

SF

SJ

MIA

city

ICOM 6005 Dr. Manuel Rodriguez Martinez 6

Static Hashing: SchemeStatic Hashing: Scheme

N -1

…

…

…

2

1

0

h

Search
Key k

…

Primary Buckets Overflow Pages

ICOM 6005 Dr. Manuel Rodriguez Martinez 7

Static Hashing: IssuesStatic Hashing: Issues

• Number of primary buckets is fixed at file creation
• Hash function maps key to a bucket number
• Typical hash function

– H(k) = a*k + b
– Bucket number = h(k) mod N

• Key can be int or char
– Char – each character is mapped to ASCII, and all value are

added to get an integer
– Parameters a and b are choose to tune the distribution of

values (i.e. need to play with this values to get them right …)

• When a primary bucket get full, need to create an
overflow page and chain it to primary bucket.

ICOM 6005 Dr. Manuel Rodriguez Martinez 8

Static hashing: OperationsStatic hashing: Operations

• Search for key value k:
– Hash k to find the bucket, call this bucket B
– Search records in B to kind the one(s) with key k
– If records are found

• clustered, the data record is there: Cost: 1 I/O
• unclustered, need to fetch the actual data page: Cost 2 I/Os

– If records are not found, need to search in overflow pages (if
there are any)

• Clustered: Cost: (1 + number of pages searched) * I/O
• Unclustered: Cost: (2 + number of pages searched) * I/O

• The more overflow page you have, the worst the
performance get
– Need to keep overflow pages to 1 or 2, but rarely gets done!

ICOM 6005 Dr. Manuel Rodriguez Martinez 9

Static Hashing: Operations (cont.)Static Hashing: Operations (cont.)
• Insert (or Update) record with key k

– Hash k to find bucket, call this bucket B
– If bucket has room

• clustered, write data record there: Cost: 2 I/Os
– Read page, then write it back updated

• unclustered, write record to actual data page: Cost 4 I/Os
– If bucket is full, write to overflow page (create one if needed)

• Clustered: Cost: (2 + number of pages searched) * I/O
• Unclustered: Cost: (4 + number of pages searched) * I/O

• Delete costs are the same, since we need to write
page back to disk

• Again, overflow pages make performance bad as the
number of records increases

ICOM 6005 Dr. Manuel Rodriguez Martinez 10

Extensible hashingExtensible hashing

• Allows the number of buckets to grow or shrink
• Hash function hashes to slots in a directory

– Slots store the page id of the bucket
– Directory can be kept in buffer pool
– Directory can have hundreds or thousand of slots to buckets

• When a bucket gets full
– Create a new bucket and split records between the new and

full bucket
• Redistributes the data
• Hash function still works!!!

– Overflow page is need only if you have many duplicate
records

ICOM 6005 Dr. Manuel Rodriguez Martinez 11

Binary Pattern Hashing TechniqueBinary Pattern Hashing Technique
• Hash function will map search key to binary pattern

– Ex h(3.40) = 00110011
• Last d bits in the pattern are taken as bucket number!

– Ex. If d = 2, then h(3.40) = 00110011 will yield bucket
number 11, which is 4 in binary

• Thus, 3.40 goes to bucket 4

• The number of d of bits used to hash the search key
is called the depth

• Two types of depths
– Bucket depth

• Number of bits need to hash value to a given bucket
– File depth

• Largest depth of any bucket

ICOM 6005 Dr. Manuel Rodriguez Martinez 12

Example Extensible Hashing IndexExample Extensible Hashing Index

2

Directory
Page

00

01

10

11

1632124

2

2151

2

10

2

19715

2

Bucket A

Bucket B

Bucket C

Bucket D

Hashing on Hashing on
an an intint attributeattribute

H(4) = 100
d = 2
gives slot 00.
For value 4
Bucket is
then found
from the slot.

ICOM 6005 Dr. Manuel Rodriguez Martinez 13

The use of the depthThe use of the depth

• Depth tells us the number of bits that we need to use
to pick a bucket
– Ex. H(4) = 100, d = 2, tell us to use 00 to identify slot. This

would be slot 00.

• Directory has a global depth
– Used to hash key to proper slot

• Each bucket has a local depth
– Used when bucket need to be slipt

• Let us see what happens when we need to insert the
value 20 into the hash index
– H(20) = 10100, d =2

ICOM 6005 Dr. Manuel Rodriguez Martinez 14

The issue of a full bucketThe issue of a full bucket

2

Directory
Page

00

01

10

11

1632124

2

2151

2

10

2

19715

2

Bucket A

Bucket B

Bucket C

Bucket D

H(20) = 10100
d = 2
gives slot 00.
This bucket is
Full

ICOM 6005 Dr. Manuel Rodriguez Martinez 15

Splitting a bucketSplitting a bucket

• A full bucket gets split into two buckets
– Their directory slots are called corresponding elements

• These buckets have the same hash value at the
current depth d

• But at depth d + 1, they differ by 1 bit
– one has a 1 at bit position d + 1
– The other has a 0 at bit position d + 1

• Example:
– Bucket A is splint into two buckets: bucket A and bucket A2
– Bucket A , d = 2, has value 00, but at d = 3 becomes 000
– Bucket A2, d = 2, has value 00, but at d = 3 becomes 100

ICOM 6005 Dr. Manuel Rodriguez Martinez 16

Splitting a bucket (cont.)Splitting a bucket (cont.)
• The values in the original bucket A and the new value

to be inserted get distributed into buckets A and A2.
• The hash function now increment the local depth of

the bucket to be d + 1
• Now, the keys are hashed to buckets using d + 1 bits
• Recall that bucket A had: 4, 12, 32, 16, and d = 2

– We wanted to insert 20
• Now d becomes 3, we get the following hashing:

– 4 = 100 H(4) = 100
– 12 = 1100 H(12) = 100
– 32 = 100000 H(32) = 000
– 16 = 10000 H(16) = 000
– 20 = 10100 H(20) = 100

ICOM 6005 Dr. Manuel Rodriguez Martinez 17

Corresponding elements & bucketsCorresponding elements & buckets

1632124

2 Bucket A

1632

3 Bucket A

20124

3 Bucket A2

Operation insert 20

After
Split

Original bucket A Split image of bucket A

splitting

Local depth is changed from 2 to 3
Need 3 bits for hashing

Hash = 00

Hash = 000
Hash = 100

ICOM 6005 Dr. Manuel Rodriguez Martinez 18

Expanding the DirectoryExpanding the Directory

2

Directory
Page

00

01

10

11

1632

3

2151

2

10

2

19715

2

Bucket A

Bucket B

Bucket C

Bucket D

20124

3 Bucket A2

Number of slots
is not enough.

Need to doubleNeed to double
size of the size of the
directorydirectory
and increaseand increase
Global depthGlobal depth

ICOM 6005 Dr. Manuel Rodriguez Martinez 19

Expanded Hash IndexExpanded Hash Index

Directory
Page

1632

3

2151

2

10

2

19715

2

Bucket A

Bucket B

Bucket C

Bucket D

20124

3 Bucket A2

3

111

110

101

100

011

010

001
000

ICOM 6005 Dr. Manuel Rodriguez Martinez 20

Some IssuesSome Issues

• Some corresponding elements point to the same
bucket
– This means the bucket has not been split

• Not all splits operations cause the directory to be
double.

• Each bucket has a local depth
– If depth of bucket = global depth – 1, then splitting this

bucket will not cause a doubling in directory

• Doubling only occurs when
– Bucket is full and cannot fit another insertion
– Bucket has same local depth as global depth

ICOM 6005 Dr. Manuel Rodriguez Martinez 21

Cost estimates for operationsCost estimates for operations

• Assume directory is in
buffer pool

• Search for equality
– Clustered – 1 I/O
– Un-clustered – 2 I/O

• Erase
– Clustered – 2 I/Os
– Unclustered – 4 I/Os

• Insert (No splitting)
– Clustered – 2 I/Os
– Unclustered – 4 I/Os

• Insert (Splitting)
– Clustered – 4 I/Os
– Unclustered – 8 I/Os

• Overflow pages will be
needed when you have
lots of values with the
same search key k

ICOM 6005 Dr. Manuel Rodriguez Martinez 22

Tradeoffs of Extensible HashingTradeoffs of Extensible Hashing

• Advantages
– Can gracefully adapt to insertion and deletions
– Limits the number of overflow pages
– Hash function is easy to implement

• No need for complex prime number computations

• Disadvantages
– Directory can grow large when we have billions of records
– Also, when we have skewed data distributions

• Lots of values go to same bucket
• Lots of empty buckets, a few one have all the data
• Overflow pages due to collisions (values that hash to same

bucket)
– Too much doubly in the size of the directory

ICOM 6005 Dr. Manuel Rodriguez Martinez 23

Linear HashingLinear Hashing

• Dynamic hashing technique
– No need for directory
– Limits overflow pages due to collisions
– Splitting of buckets is done in a more lazy fashion

• Idea is to have a family of hash functions
– h0, h1, h2, …
– Each function has a range twice as big as the predecesor

– If hi maps to M buckets, hi+1 maps to 2M buckets
– This is used when more buckets are needed

• Switch from current hi to hi+1 if we need to grow number of
buckets beyond current M (we double number of buckets
to 2M)

ICOM 6005 Dr. Manuel Rodriguez Martinez 24

Building the family of hash functions Building the family of hash functions

• General form is
– hi (key) = h(key) mod (2iN)
– h(key) acts as the base function
– h(key) is the same as for extensible hashing

• Looks as the bit pattern in the value

• If N is a power of 2, and d0 is the number of bit to
represent N, then di gives the number of bits used by
function hi

– di = d0 + i

ICOM 6005 Dr. Manuel Rodriguez Martinez 25

General SchemeGeneral Scheme

• Hash index file as an associated round number
– Called Level

• At round number Level we use hash functions
– hLevel and hLevel + 1

• We keep track of the next bucket to be split
– Buckets are split in a round robin fashion

• Every bucket eventually gets splits …

• Index file has tree types of buckets
– Buckets that were split in this round
– Buckets that are yet to be split
– Buckets created by splits in this round

ICOM 6005 Dr. Manuel Rodriguez Martinez 26

Organization of Index Hash FileOrganization of Index Hash File

Next bucket to
be split

Split in this round

Original Buckets
in this Level
hLevel used here

Buckets
not split

New buckets
resulting from
splits

ICOM 6005 Dr. Manuel Rodriguez Martinez 27

Example scenarioExample scenario

364432

5259

30101814

1173531

00

01

10

11

000

001

010

011

h1 h0 Next=0

