
ICOM 6005 ICOM 6005 –– Database Management Database Management
Systems DesignSystems Design

Dr. Manuel Rodríguez-Martínez
Electrical and Computer Engineering Department

ICOM 6005 Dr. Manuel Rodriguez Martinez 2

Query Evaluation TechniquesQuery Evaluation Techniques

• Read :
– Chapter 12, sec 12.1-12.3
– Chapter 13

• Purpose:
– Study different algorithms to execute (evaluate)

SQL relational operators
• Selection
• Projection
• Joins
• Aggregates
• Etc.

ICOM 6005 Dr. Manuel Rodriguez Martinez 3

Selection and SFSelection and SF

• Selections can have where clause with CNF, or DNF.
• Selectivity factor for CNF case:

– If where clause is of the form

p1 and p2 and … and pn,
– then

– Assume that all predicates are independent
– Exsmple:

Select sid, sname
From Students
Where gpa= 4.0 AND age < 25 AND sname <> “Bob”;

1 2 ...p p pnSF SF SF SF= ∧ ∧ ∧

ICOM 6005 Dr. Manuel Rodriguez Martinez 4

Some examplesSome examples
• Query:

Q1: Select sname, sage
From Students where gpa = 4.0;

Q2: Select sname, gpa
From Students where gpa > 3.50 AND age < 25;

• Information for Students:
– Cardinality = 5,000
– #tuples / page = 100
– SF gpa> 3.50 = 10%
– SF age < 25 = 90%

• Get selectivity of each predicate? What about where
clause? Which predicate should go first?

ICOM 6005 Dr. Manuel Rodriguez Martinez 5

The Role of sorting The Role of sorting

• Sorting plays a pivotal role in the implementation of
relational operators and in choosing access path

• Idea: If some operator need to pass several times over
the tuples of a table, sorting might speed things up

• Examples:
– Sorting for duplicate elimination in projections
– Sort-merge join
– Sorting for aggregation
– Sorting for order by clauses

• Question: Since a table R can have gigabytes of worth
of data, how do we sort?
– Answer: External Sorting

ICOM 6005 Dr. Manuel Rodriguez Martinez 6

External SortingExternal Sorting

3,4 5,2 8,1 2,10

3,4 2,5 1,8 2,10

2,3 4,5 1,2 8,10

1,2 2,3 4,5 8,10

Input file

Sort pages
(Quicksort)

Merge-Sort
into 2-pages
Blocks (runs)

Merge-Sort
into 4-pages run

ICOM 6005 Dr. Manuel Rodriguez Martinez 7

Progression of the algorithmProgression of the algorithm

• Pass 0: produces 2k sorted runs of 1 page

• Pass 1: produces 2k-1 sorted runs of 2 pages

• Pass 2: produces 2k-2 sorted runs of 4 pages

• Pass 3: produces 2k-3 sorted runs of 6 pages
• …
• Pass k: produces 1 sorted run 2k tuples
• The costs of external sorting:

– 2 I/O per page per pass (1 read, 1 write)

– Number of passes: log2 N + 1, N is the # of pages
– Total cost: 2N * (log2 N + 1)

ICOM 6005 Dr. Manuel Rodriguez Martinez 8

The idea behind External sortingThe idea behind External sorting

• Phase I, sort each page in memory using an in-
memory sorting algorithm
– Often Quicksort is used
– Requires 1 pass over the relation to sort
– Each page is called a 1-page run

• Run is a collection of pages with sorted tuples, stored as a file

• Phase II, merge sort
1. Let i = 1
2. Start sort merging pairs of runs of size i to build runs of size

2i
3. When all runs of size i have been consumed

• If only one run remains, finish
• else set i = 2i, and goto step 2

ICOM 6005 Dr. Manuel Rodriguez Martinez 9

Implementing External SortingImplementing External Sorting

• Each run is stored in a temporary file
• Worst case, you need three buffer pages

– 2 pages for input
– 1 page for output

• Usage of pages
– One is used to keep a page of tuples from a run A
– The other is used to keep a page of tuples from a run B
– Third page becomes a merged and sorted page to become

part of a new run C, with size twice that of the runs A and B

• In practice, you have B pages available
– B – 1 are used to input runs
– 1 is used for output

ICOM 6005 Dr. Manuel Rodriguez Martinez 10

Three buffer pagesThree buffer pages

Input 1

Input 2
Output

Buffer pages

This is the minimal barebones scheme

ICOM 6005 Dr. Manuel Rodriguez Martinez 11

Reality: B buffer pagesReality: B buffer pages

Input 1

Input 2
Output

Buffer pages

This is the minimal barebones scheme

Input B-1

……

ICOM 6005 Dr. Manuel Rodriguez Martinez 12

Sorting with B buffers: Pass 0Sorting with B buffers: Pass 0

3,4 5,2 8,1 2,10 7,21 9,6

5,2 2,10

3,4 8,1

1,2 2,3 4,5 8,10

Sort & Merge

1st run on pass 0

ICOM 6005 Dr. Manuel Rodriguez Martinez 13

Sorting with B buffers: Pass 0 (cont.)Sorting with B buffers: Pass 0 (cont.)

3,4 5,2 8,1 2,10 7,21 9,6

7,21

9,6

1,2 2,3 4,5 8,10

Sort & Merge

2nd run on pass 06,7 9,21

ICOM 6005 Dr. Manuel Rodriguez Martinez 14

Sketch of AlgorithmSketch of Algorithm

• Pass 0:
– Read B pages at a time,
– sort each page in memory (e.g. quick sort or heap sort)
– Write run of size B to disk. This will produce N/B runs,

where N = NPages(R) for relation R

• Passes 1, 2, …, K
1. Use B -1 buffers to read a page from each run of size i
2. Do a (B-1)-way sort merge to produce a run with the size

2i. Each page is first kept in ouput buffer, then written
3. Repeat (2) until all runs of the current size have been

merged
4. If only only run is left, exit.
5. Goto (1)

ICOM 6005 Dr. Manuel Rodriguez Martinez 15

Leveraging on buffersLeveraging on buffers

• By using B buffers first pass builds N/B runs, where
N is NPages(R) for a relation R
– Originally we had N runs …

• Moreover, the total number of passes to do sorting is
decreased by doing (B-1)-way merging operations

• The cost for sorting a relation R, with N pages using
B buffers (1 for output, B-1 for input) is:
– I/O Cost = logB-1 N/B  + 1
– Must do (B-1)-way merging operations

• Example: For table R, N = 10000, B = 5
– I/O Cost = log4  10000/5  + 1 = 7 I/Os
– I/O Cost with 3 buffers=  log2 10000 + 1 = 15 I/Os

ICOM 6005 Dr. Manuel Rodriguez Martinez 16

Implementing Selection OperatorImplementing Selection Operator

• Selection operator can be done via:
– File Scan

• Unsorted data
• Sorted data

– Index Scan
• B+-tree
• Hash Tree

• Each access path has very different costs
• File Scans fetch the data and then apply predicates.
• Index scan combine the search with predicate

evaluation
– Search on the index is implicit predicate evaluation.

ICOM 6005 Dr. Manuel Rodriguez Martinez 17

ScenarioScenario
• Query:

Q1: Select sname, sage
From Students where gpa = 4.0;

Q2: Select sname, gpa
From Students where gpa > 3.50 AND age < 25;

• Information for Students:
– Cardinality = 5,000
– #tuples / page = 100
– SF gpa> 3.50 = 10%
– SF age < 25 = 90%

• Get selectivity of each predicate? What about where
clause? Which predicate should go first?

ICOM 6005 Dr. Manuel Rodriguez Martinez 18

Costs for Selection Access pathsCosts for Selection Access paths

1. No index, and data not sorted for table R
– Algorithm: Read each tuples, and evaluate the predicates in

the where clause for each one.
– Cost: Read entire relation R = NPages(R) I/Os

2. Data Sorted on attribute in a predicate: Attr = value
– Algorithm: Do binary search to find first attribute that

matches, then scan subsequent pages until no attribute
matches the condition

– Cost: (log2(NPages(R)) + # of pages with matches) !/Os

• Do not sort the data just to run a selection!

ICOM 6005 Dr. Manuel Rodriguez Martinez 19

Cost for selections with Hash IndexCost for selections with Hash Index

• Hash index, and predicate : Attr = value
– Algorithm: Probe hash table to find page with

values.
• Clustered: Fetch records, and read any overflow page
• Cost: (2 + #number of overflow pages) * I/O
• Unclustered: Fetch records, fetch data pages, and do the

same for overflow pages.
• Cost: Variable, in the worst case each search key forces

us to read a different page in the data file.
• Often we don’t use unclustered index for selections
• Use selectivity to make a good guess

