[image: image1.png]

Department of Electrical and Computer Engineering

University of Puerto Rico

Mayagüez Campus

ICOM 4035 – Data Structures

Spring 2005
Project #1:Auto Parts Catalog using Dynamic Arrays
Due Date: 11:59 PM-February 24, 2005
Objectives

1. Understand the design, implementation and use of a Set and Map ADT using dynamic arrays.
2. Gain experience implementing applications using layers of increasing complexity and fairly complex data structures.

3. Gain further experience with object-oriented programming concepts, specially interfaces and inheritance.
Overview

You will design, implement and test an application that works as a catalog for an auto parts store. The application will keep track of cars, parts, and the relation between the parts and the cars that use them. There will be a class, called Car, which keeps information about a car. The information kept is: a) key, b) brand, c) model, d) year, e) price, f) color, and g) group of parts. Likewise, there will be a class, called Part, which keeps track of the information about a part. The information about parts that is kept is: a) key, b) name, c) material, d) price, and e) color.
The information about cars and parts will be kept in a Map container class. There will be two maps, one for the cars and a second one for the parts. Each map implements a container class used to store, search and delete objects based on a key attribute. Each object has an associated key, and the key is a value that uniquely identifies that object. If two objects have the same key, then they are equal. For each car, the application will keep track of the parts used by the car. This information will be kept in a Set container class. Each car object uses a Set to store information about a group of parts that are used in the car. The Set stores the key of the parts that are found in the given car.

The application will be support the following operations:

1. Add a new car to the system

2. Search for the information about a car

3. Delete a car from the system

4. Add a new part for the system

5. Search for the information about a part

6. Delete a part from the system

7. Get all the parts used in a given car

8. Associate a part with a car

9. Print all cars

10. Print all parts

Set ADT
The operations of the Set ADT are specified in the Set interface, and implemented in the DynamicSet class. Your job is to implement the DynamicSet class. The following is the specification of the Set interface and DynamicSet class:
Set interface:
· add() - Adds a new object to this Set, if not already present
· remove() - Removes an object from the Set, returning true if the element is found and erased or false otherwise.
· contains() - Determines is an object obj is contained in the Set.
· size() - Returns the number of elements in the Set.
· isEmpty() - Determines if a Set is the empty Set.
· makeEmpty() - Removes all the elements from the Set, making it an empty set.
· add(Set) - Add all the elements from set S into this set. This method is equivalent to: this = this union S.
· isSubSet() - Determines if a set S is a subset of this set.
· union() - Computes the union between a set S and this set, and returns its result. This is equivalent to C = A union B, where A is this set and B is the parameter.

· difference() - Computes the difference between a set S and this set, and returns its result. This is equivalent to C = A difference B, where A is this set and B is the parameter.

· intersection() - Computes the intersection between a set S and this set, and returns its result. This is equivalent to C = A intersection B, where A is this set and B is the parameter.
DynamicSet members:
· INIT_CAP – Initial capacity of the set.
· currCap - Current capacity of the set
· count - Current size of the set
· elems - Elements in the set
· get(int pos) – private method. Returns the element at position pos.
· capacity() - Returns the current capacity of this set.
· DynamicSet() - Default constructor. Creates an empty Set with default capacity.
· DynamicSet(int initCap) - Constructor used to create an empty set with a specified initial capacity.
· DynamicSet(DynamicSet S) - Copy constructor used to create a new set from an existing one via a deep copy.
The class implements the functions of the interface Set. You are required to implement these methods.
Map ADT
The operations of the Map ADT are specified in the Map interface, and implemented in the DynamicMap class. Your job is to implement the DynamicMap class. The following is the specification of the Map interface and DynamicMap class:

Map interface:
· get () – Returns the object that is associated with a given key.
· put() - Associates a object with a given key, and stores this information into the Map.
· remove() - Removes the object associated with a given key from the Map.
· containsKey() - Determines if the Map contains an object that is associated with a key.
· isEmpty() - Determines is the Map is empty or not.
· makeEmpty() - Removes all elements from the Map.
· size() - Returns the number of elements in the Map.
· toArray() - Returns all the values stored in the map in an array of Object. If the Map is empty, the function returns null.
Map entry inner class

The MapEntry inner is used to keep the objects inside the Map. You get the code for this. The MapEntry stored three values: a) the key of the object, b) the object itself, and c) a flag used to indicate if the MapEntry is currently in use or free. When a new object is to be added, simply find a free entry, and add to the it, the key of the new object and the object. When an object is to be found, simply search the entries in use to find the one with the matching key. Finally, when an object is to be erased find the entry with the key of the object and mark the entry as free.

Dynamic Map Members
· INIT_CAP – Initial capacity of the Map.

· currCap - Current capacity of the Map
· count - Current size of the Map
· elems - Elements in the Map
· get(int pos) – private method. Returns the element at position pos.
· capacity() - Returns the current capacity of this Map.
· DynamicMap() - Default constructor, that creates an empty map.
Catalog Manager

This class implements the logic of the application that manages the catalog, implementing the functions the ten operations mentioned before.
Distribution Files

You can go to the class web page and download a tar file containing all the files related with this project. Just access the link named Projects, and download the sources files associated with the link: Project # 1- Auto Parts Catalog with Dynamic Arrays
Your implementation will consist of adding Java code to implement three modules: DynamicSet.java, DynamicMap.java, and CatalogManager.java. The full list of files in the distribution is as follows:
1. Set.java – interface for the Set ADT
2. DynamicSet.java – implementation of the Set ADT with a dynamic array. YOU MUST IMPLEMENT THE METHODS FOR THIS CLASS.
3. Map.java – interface for the Map ADT

4. DynamicMap.java – implementation of the Map ADT with a dynamic array. YOU MUST IMPLEMENT THE METHODS FOR THIS CLASS.

5. Searchable.java - exposes the methods that must be supported by those objects that can be searched on container class based on the value of a key.

6. Part.java – class that represents a part.

7. Car.java – class that represents a car.

8. SetTester.java – test program for the DynamicSet class.

9. MapTester.java - test program for the DynamicMap class.

10. CatalogManager.java – implements the functionality of the application to manage the catalog. YOU MUST IMPLEMENT THE METHODS FOR THIS CLASS.
11. AutoPartCatalog – Main program for the Auto Parts Catalog.
12. test1.in – test input file 1.

NOTE: YOU PROGRAM MUST PASS THIS FILE WITHOUT ERRORS IN ORDER TO BE CONSIDERED A RUNNING PROGRAM.

13. test1.out – expected output from test input file 1.

14. test2.in – test input file 2.

15. test2.out – expected output from test input file 2.

16. test3.in – test input file 3.

17. test3.out – expected output file from test input file 3.

PROJECT DUE DATE: 11:59 PM – February 24, 2005.

� EMBED MSDraw.1.01 ���

[image: image2.png]

_1057345867

