INEL-6080 VLSI SYSTEMS DESIGN

Lecture 2

Characteristics of Digital ICs

CHARACTERISTICS OF DIGITAL ICs Quality Metrics in IC Design

- 1. Cost
 - Resource investment to produce a batch of ICs
- 2. Functionality
 - IC ability to perform the function it was designed for
- 3. Performance
 - Circuit speed: delay, operating frequency, and processing capability
- 4. Robustness
 - Ability to withstand process variations and noise disturbances
- 5. Power and Energy Consumption
 - Energy consumed for IC operation and heat dissipation

$CHARACTERISTICS \ OF \ DIGITAL \ ICs$

- Non-recurrent Engineering (NRE) Costs (Fixed) One-time cost factors. Independent from production volume
 - Design time and effort
 - Mask generation
 - Indirect costs: R&D, infrastructure, marketing, etc.
- Recurrent Costs (Variable) *Cost directly attributable to a manufactured product. Proportional to chip area and product volume*
 - Silicon processing
 - Die testing
 - IC packaging

$\frac{\text{CHARACTERISTICS OF DIGITAL ICs}}{Fixed \ Costs}$

- Increase with:
 - Technology scaledown
 - Stringent design specifications
 - Chip complexity
- Decrease with:
 - Design automation level

CHARACTERISTICS OF DIGITAL ICs Variable Cost Computation

Variable $cost = \frac{Die cost + Testing cost + Packaging cost}{Test yield}$

CHARACTERISTICS OF DIGITAL ICs Die Cost and Yield

CHARACTERISTICS OF DIGITAL ICs Estimating Variable Costs

- Cost estimation during design phase
 - Based on process characterization information and design information

Die yield =
$$\left(1 + \frac{\text{defects per unit area} \times \text{die area}}{\alpha}\right)^{-\alpha}$$

 α is approximately 3

die
$$cost = f(die area)^4$$

$\label{eq:characteristics} \begin{array}{c} \text{CHARACTERISTICS OF DIGITAL ICs} \\ \textbf{A Few Cost Examples} \end{array}$

Based on production data back in 1994

Chip	Metal layers	Line width	Wafer cost	Def./ cm ²	Area mm ²	Dies/w afer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

CHARACTERISTICS OF DIGITAL ICs Performance

- Computational speed of a digital circuit:
 - Microprocessor: MIPS
 - Digital Gate: Propagation Delay

Amount of time it takes an input stimulus to produce a change in the gate output

- Parameters:
 - t_{PHL} = Low-high propagation delay
 - t_{PHL} = High-low propagation delay
 - t_{PD} = Average propagation delay
 - t_r = Rise time
 - $t_f = Fall time$

CHARACTERISTICS OF DIGITAL ICs Delay Definitions

$\frac{CHARACTERISTICS \ OF \ DIGITAL \ ICs}{Ring \ Oscillator}$

A First-Order RC Network

 $t_p = \ln (2) \tau = 0.69 RC$

Important model – matches delay of inverter

CHARACTERISTICS OF DIGITAL ICs Functionality and Robustness

- Sources of Noise in Digital Ics:
 - Crosstalk (Inductive and capacitive coupling)
 - Reflections and ringing
 - Power Supply Noise

$CHARACTERISTICS \ OF \ DIGITAL \ ICs$ $Robustness \ Parameters$

- Voltage Transfer Characteristic
- Noise Immunity
- Regenerative Property
- Directivity
- Fan-in and Fan-out

$\frac{\text{CHARACTERISTICS OF DIGITAL ICs}}{\text{VTC Thresholds}}$

CHARACTERISTICS OF DIGITAL ICs Noise Margins

CHARACTERISTICS OF DIGITAL ICs Example: Inverting VTC

