CHARACTERISTICS OF DIGITAL ICs

Regenerative Property

\[f(v) \]

![Regenerative Property Diagram](image)
CHARACTERISTICS OF DIGITAL ICs

Effect of Regenerative Property

A chain of inverters

Simulated response
CHARACTERISTICS OF DIGITAL ICs

Key Reliability Properties

• Absolute noise margin values are deceptive
 – A floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)

• Noise immunity is the most important metric
 – Defines the circuit capability to suppress noise sources

• Key metrics:
 – Noise transfer functions
 – Output impedance of the driver
 – Input impedance of the receiver
CHARACTERISTICS OF DIGITAL ICs

Noise Budget

• Allocates gross noise margin to expected sources of noise

• Differentiate between fixed \(V_{Nf} \) and proportional \(V_{sw} \) noise sources

\[
V_{NM} = \frac{V_{sw}}{2} \geq \sum_{i} f_i V_{Nfi} + \sum_{j} g_j V_{sw}
\]

• Sources: supply noise, cross talk, interference, offset
CHARACTERISTICS OF DIGITAL ICs

Directivity

• Digital gates are expected to be Unidirectional
 – Changes in the output should not affect the signals at the input

• Fully directivity cannot be achieved
 – Feedback
 – Coupling
CHARACTERISTICS OF DIGITAL ICs

Fan-in and Fan-out

Fan-out N

N

M

Fan-in M
Fan-out Criteria

• Fan-Out Definition:

Maximum number of loads (N) that a gate can handle without degrading its functionality or performance.
 – Current-voltage criteria

\[
N = \min\left\{ \frac{I_{OH}}{I_{IH}}, \frac{I_{OL}}{I_{IL}} \right\}
\]

 – Performance criteria

\[
N = \min\left\{ \left| \frac{C_{LH_{\max}}}{C_{in}} \right|, \left| \frac{C_{HL_{\max}}}{C_{in}} \right| \right\}
\]
CHARACTERISTICS OF DIGITAL ICs

Power Dissipation

Instantaneous power:
\[p(t) = v(t)i(t) = V_{\text{supply}}i(t) \]

Peak power:
\[P_{\text{peak}} = V_{\text{supply}}i_{\text{peak}} \]

Average power:
\[P_{\text{ave}} = \frac{1}{T} \int_{t}^{t+T} p(t)dt = \frac{V_{\text{supply}}}{T} \int_{t}^{t+T} i_{\text{supply}}(t)dt \]
CHARACTERISTICS OF DIGITAL ICs

Power Components

\[P_T = P_S + P_D \]

- **Static Power (PS):**
 - Consumed to hold a static logic level
- **Dynamic Power (PD):**
 - Associated to level transitions on the gate
CHARACTERISTICS OF DIGITAL ICs

Energy and Energy-Delay

Power-Delay Product (PDP) =

\[E = \text{Energy per operation} = P_{av} \times t_p \]

Energy-Delay Product (EDP) =

quality metric of gate = \[E \times t_p \]
CHARACTERISTICS OF DIGITAL ICs

The Ideal Gate

\[g = \infty \]

\[
\begin{align*}
Z_i &= \infty \\
Z_O &= 0 \\
N &= \infty \\
LS &= V_{DD} - V_{SS} \\
NM_H &= NM_L = \frac{V_{swing}}{2} \\
t_{PD} &= 0 \\
P_D &= 0
\end{align*}
\]