

 $\overline{\mathbf{E}}$ is the electrical field in V/m (a gradient)

Have you seen a similar equation recently?

So, according to Pauli's exclusion principle, *no two atoms can* share the same energy level unless they have opposed spins (i.e. $m_s = +\frac{1}{2}, -\frac{1}{2}$)

Then the differences in band energies answer our question about materials with different resistivities.

Now the gap between bands is still finite but not large: Semiconductors may have reasonable conductivity under certain conditions Lots of energy needed to promote an electron to the conduction band

Let's first talk about good electrical conductors

Metals are the best examples of good electrical conductors: The electrical resistivity can go from 1.48 $\mu\Omega$ ·cm for Ag to 50 $\mu\Omega$ ·cm in stainless steels.

In pure metals:

 $\rho_{\text{total}} = \rho_{\text{T}} + \rho_{\text{r}}$ (approx.)

Drifting electrons are affected by phonons (elastic waves thermally excited)

 \rightarrow more temperature \rightarrow more obstacles for electron movement

 \rightarrow higher resistivity

More on the Temperature Effect on the Electrical Resistivity of Metals

At higher temperatures there is an approximate linear dependence:

 $\rho_{\mathsf{T}} = \rho_{0^{\circ}\mathsf{C}} + \alpha_{\mathsf{T}} \cdot \mathsf{T}$

where α_T is the temperature coefficient of resistivity and T is the temperature in °C.

Temperature is not the only factor interacting with phonons. Impurities are also hurdles for phonons as we'll see next.

Another More Recent Example

Nagamatsu *et al.* announced the discovery of superconductivity in magnesium diboride (MgB_2) in the journal *Nature* in March 2001

At T>T_C (superconductivity is destroyed) the material is penetrated more or less uniformly by the applied magnetic field.

Let's introduce the semiconductors

- Intermediate behavior between insulators and conductors.
- Their conductivity is highly dependent on temperature and chemical composition
- Two types:
 - -Intrinsic semiconductors
 - -Extrinsic semiconductors

Intrinsic semiconductors are those where except for temperature there is **no** external factor affecting their conductivity.

- Elements from Group IV-A (or 14) of the Periodic Table and some compounds.
- Silicon and germanium
- What do they have in common?

	ШA	IV A	VA.	MA
	s B	е С	7 N	° 0
	13	14	15	16
IВ	AI	Si	Р	s
30	31	3Z	39	Э4
Ζп	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	SI	SD	le

material	band gap (eV)
Si	1.11
Ge	0.67
GaP	2.25
CdS	2.40
GaAs	1.42

Intrinsic Semiconductors (cont.)

The negative charges (electrons) are equal in number to the negative charges (holes).

Conductivity of semiconductors can be calculated as:

$$\sigma = n_i \cdot q \cdot (\mu_n + \mu_p)$$

n_i: number of charge carriers (electrons or holes) q: electron or hole charge ($1.60 \cdot 10^{-19}$ Coulombs) μ_n and μ_p : mobilities of electrons and holes, respectively

Intrinsic Semiconductors (cont.)

Remember that temperature measures internal energy.

Conductivity in semiconductors increases with temperature.

Could you explain why semiconductors behave much different from conductors? Think of the energy gaps.

 $n_i \propto e^{-E_g/2kT}$

Extrinsic Semiconductors

Let's intentionally add impurities with a valence of <u>one</u> higher or <u>one</u> lower, to silicon or germanium.

We need to have an excess of electrons or holes by unbalancing the electronic array of the crystal

Look at the periodic table for candidates!

Semiconductor Devices

A p-n diode junction is put together linearly or planarly (for computer chips)

Silicon is grown as a single crystal. Doping is done with diffusion process (Chapter 5).

Other Electrical Properties of Materials: Ferroelectricity

Let's review the concept of dipolar moment. Dipolar moment is due to local unbalance of charges in ionic or covalent molecule or crystal.

Remember: methane (CH_4) tetrahedron is "chargesymmetric" so there's no dipole moment. H₂O molecule is not, so it forms a dipole:

Ferroelectrics

Dielectric materials (large resistivity) that experience polarization in the absence of any electric field \rightarrow strong dipole moments.

Classic example: barium titanate $BaTiO_3$ At room temp. \rightarrow slightly asymmetric perovskite structure

Ionic crystal with Ba²⁺, Ti⁴⁺ and O²⁻ ions.

Н

Ba²⁺ O^{2–} Ti⁴⁺

0

Piezoelectricity (cont.)

Example: lead zirconate or PZT PbZrO₃ (also a perovskite-type structure).

Uses of piezoelectric materials: transducers, speakers, ultrasonic probes (to break kidney stones), ultrasonic detectors, actuators, piezoelectric motors, etc.

