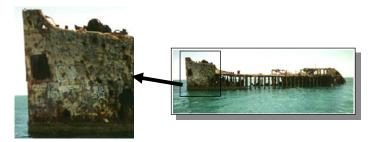

CHAPTER 23: **CORROSION AND DEGRADATION**


CORROSION

Corrosion:

The corrosion is the deterioration of the metals (oxidation) in different environments in presence of oxygen.

 $M \longrightarrow M^{+n} + ne^{-1}$ Anodic reaction:

Cathodic reaction: $2H^+ + 2e^- \longrightarrow H_2$ (acid environment) $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ (basic environment)

Example: CORROSION OF ZINC IN ACID

- Two reactions are necessary:
 - $Zn \rightarrow Zn^{2+} + 2e^{-}$ -- oxidation reaction: $2H^+ + 2e^- \rightarrow H_2(gas)$ -- reduction reaction:
 - H^+ oxidation reaction Zn →7n²⁺ H^+

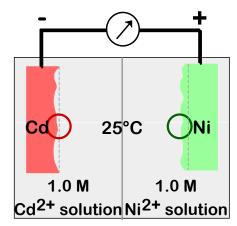
flow of e⁻ in the metal^{2e-}

Zinc

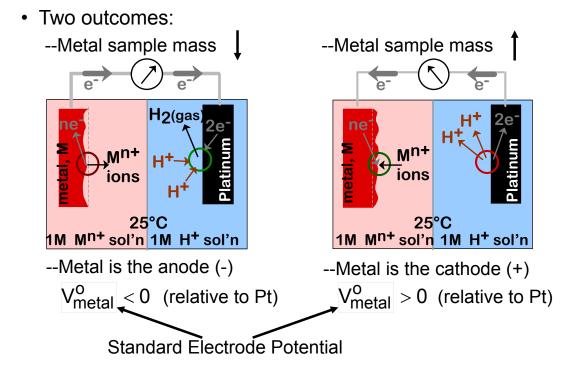
-- in an acid solution -- in a neutral or base solution

Acid

 H^+

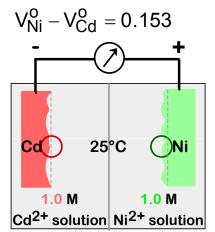

solution

- $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ $O_2 + 2H_2O + 4e^- \rightarrow 4(OH)^-$

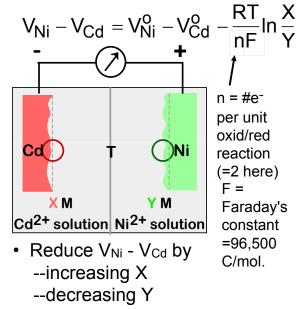

STANDARD EMF SERIES

• [EMF seri	es _{V 0}
	metal	^v metal
<u>.</u>	Au	+1.420 V
bo	Cu	+0.340
Ę	Pb	- 0.126
с О	Sn	- 0.136
e	Ni	- 0.250 🕇 🕠
more cathodic	Со	- 0.277 DV =
Ε	Cd	- 0.403 - 0.153V
more anodic	Fe	- 0.440
	Cr	- 0.744
ŏ	Zn	- 0.763
an	AI	- 1.662
စ	Mg	- 2.262
ē	Na	- 2.714
	K	- 2.924

- Metal with smaller V_{metal}^{o} corrodes.
- Ex: Cd-Ni cell



This is how we measure the potentials in the EMF Series:



 Ex: Cd-Ni cell with standard 1M solutions

 Ex: Cd-Ni cell with non-standard solutions

Nernst equation is used to measure the potential difference:

$$V = V^0 + \frac{RT}{nF} \ln C_{ion}$$

Where:

V = New potential of half-cell, V

V⁰ = Standard potential, V

R = Real gas constant, 8.3143 J/mol °K

T = Temperature, °K

- n = Number of electrons transferred.
- F = Faraday constant, 96,500 C/mol or A· s/mol

C_{ion} = Molar concentration of ions

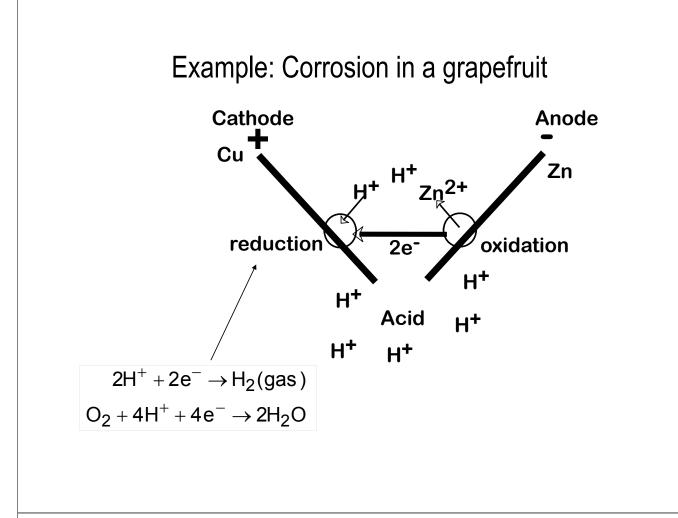
If we need to measure the amount of mass lost by corrosion we use Faraday equation:

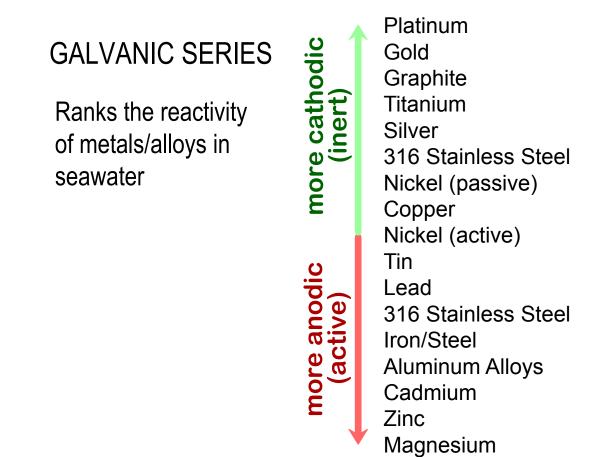
$$w = \frac{ItM}{nF} = \frac{iAtM}{nF}$$

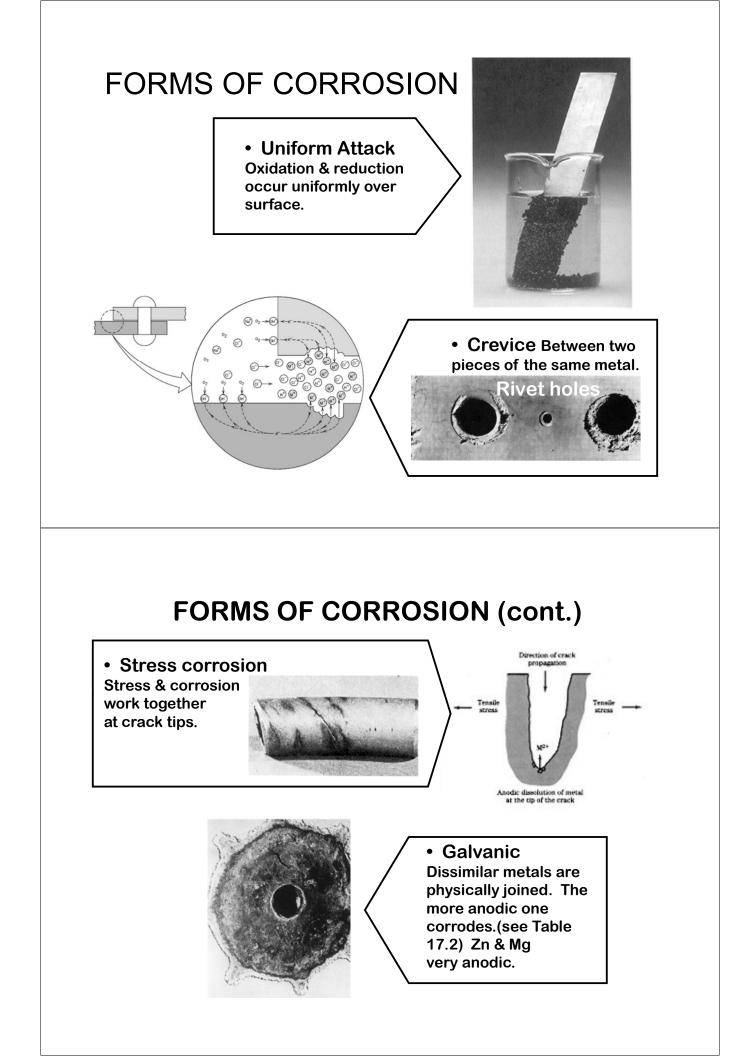
Where:

w = lost weight, g

M = Atomic mass of the metal, g/mol


t = time, sec


I = current density, A/cm^2


n = number of electrons transferred

F = Faraday constant, 96,500 C/mol or A.s/mol

A = area, cm^2

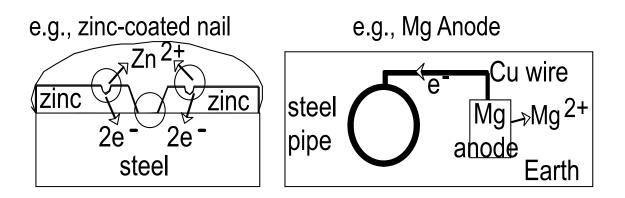
FORMS OF CORROSION (cont.)

• Selective Leaching Preferred corrosion of one element/constituent (e.g., Zn from brass (Cu-Zn)).

> • Pitting Downward propagation of small pits & holes.

• Erosion-corrosion Break down of passivating layer by erosion (pipe elbows). $u = \frac{1}{2} + \frac{$

CONTROLLING CORROSION


 Self-protecting metals!
 --Metal ions combine with O to form a thin, adhering oxide layer that slows corrosion.

> Metal oxide Metal (e.g., Al, stainless steel)

- Reduce T (slows kinetics of oxidation and reduction)
- Add inhibitors
 - --Slow oxidation/reduction reactions by removing reactants (e.g., remove O₂ gas by reacting it w/an inhibitor).
 - --Slow oxidation reaction by attaching species to the surface (e.g., paint it!).

CONTROLLING CORROSION (cont.)

• Cathodic (or sacrificial) protection --Attach a more anodic material to the one to be protected.

Rate of oxidation

Rate of oxidation and the tendency of the film to protect the metal from further oxidation are related to the relative volumes of the oxide and metal.

$$P - B ratio = \frac{A_0 \rho_M}{A_M \rho_0}$$

Where:

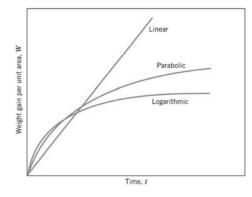
P-R ratio = Pilling-Bedworth ratio

 A_0 = is the molecular (or formula) weight of the oxide

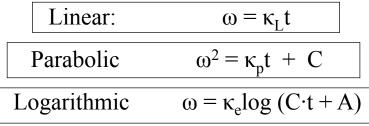
 A_{M} = is the atomic weight of the metal

 ρ_0 = oxide density

 ρ_0 = metal density

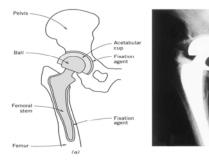

Oxidation rate (kinetics)

Where:


 ω = weight gain per unit area

t = time


 $\kappa_{\text{L}},\,\kappa_{\text{p}}$ and κ_{e} are the constant linear, parabolic and logarithmic respectively.


C and A are constant.

Example: Artificial total hip replacement

X-rays of a normal hip joint and fractured hip joint

Schematic diagram and x-ray of an artificial total hip replacement

Artificial total hip replacement (cont.)

Three types of biomaterials are used for hip implants:

- Austenitic stainless steel 316L with low sulfur content (< 0.002 wt%) and extremely low carbon
- Cobalt-nickel-chromium-molybdenum MP35N with a composition 35 wt% Co, 35 wt% Ni, 20 wt% Cr, and 10 wt% Mo.
- Titanium Ti-6AI-4V with a composition 90 wt% Ti, 6 wt% AI and 4 wt% V

Artificial Total Hip replacement

•					-	
Alloy	Elastic Modulus [GPa (psi)]	0.2% Yield Strength [MPa (ksi)]	Tensile Strength [MPa (ksi)]	Elongation at Fracture (%)	Fatigue Strength or Limit, 10 ⁷ Cycles [MPa (ksi)]	Corrosion Rate (mpy)"
316L Stainless steel (cold worked)	$196 (28.4 \times 10^{6})$	700 (102)	875 (127)	12	383 (55.5)	0.001-0.002
MP35N (hot forged)	$230 \\ (33.4 \times 10^{6})$	1000 (145)	1200 (174)	13	500 (72.5)	0.0012-0.002
Ti-6Al-4V (hot forged)	120 (17.4 × 10 ⁶)	950 (138)	1075 (156)	13	580 (84.1)	0.007-0.04

Mechanical and Corrosion Characteristics of Three Metal Alloys That Are Commonly Used for the Femoral Stem Component of the Prosthetic Hip

" mpy means mils per year, or 0.001 in./yr

SUMMARY

Corrosion occurs due to:
--the natural tendency of metals to give up electrons.
--electrons are given up by an oxidation reaction.
--these electrons then are part of a reduction reaction.

- Metals with a more negative Standard Electrode Potential are more likely to corrode relative to other metals.
- The Galvanic Series ranks the reactivity of metals in seawater.
- Increasing T speeds up oxidation/reduction reactions.
- Corrosion may be controlled by:
 - -- using metals which form -- adding inhibitors
 - a protective oxide layer
- -- painting

-- reducing T

--using cathodic protection.