

Construction of a Binary Phase Diagram

Note the beginning and end of each thermal event (transformation).

They correlate with one point in the phase diagram below.

Table Cu-	Ni is		Engineering Materials	ohous
		a an an an an a	/stem	/
	Z	Crystal Structure	electronegativity	<i>r</i> (nm)
Ni	28	FCC	1.9	0.1246
Cu	29	SCO FCC	1.8	0.1278
	10.00		Cu ₁₀ on ₃	V.

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility
- Ni and Cu are totally miscible in all proportions

should be able to tell which element has a higher atomic weight

S.

Solubility Revisited

What is solubility?

C.

- How does is change with temperature?
- Phase diagrams provides information of solubility.
- Again: remember the Hume-Rothery rules for solid solubility prediction

10

Liquid (brine)

Ice + salt

20 % NaCl

brir

10

0

-20

-40

-60

Temperature °C

20 % CaCl₂

Let's learn how to read these phase diagrams. Think of winter in Alaska.

This lowest melting points are called *eutectics*

