Hypoeutectoid Carbon Steels
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By the end of this lecture you should be able to predict the amount of carbon in a
plain-carbon hypoeutectoid steel by just looking at a micrograph

Hypereutectoid Carbon Steels

The proeutectoid phase now is
cementite
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Photomicrograph of a 1095 (
carbon) steel. Notice the network shape
of proeutectoid cementite

Proeutectoid cementite tends to form in the parent austenite grain boundaries. This worsens
the brittleness of these steels even more. High carbon steels have limited applications.




Example Problem

Homework: a) Determine the value x that allows you to obtain

92% of total ferrite. b) Determine the value x that allows youto |\«

obtain 30% proeutectoid ferrite "
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Now do the same assuming the x is in a hypereutectoid

Carbon steels steel and you need 10% proeuctectoid Fe;C
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+ Because those proportions (or
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composition that fits your steel
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This is a brief (and very limited) classification of solid-
solid phase transformations in crystalline engineering
materials:

« Diffusion-controlled phase transformations without
change of number of phases and their composition:

— Recrystallization

» Diffusion-controlled phase transformations with
change of number of phases and composition

— Isothermal transformations (eutectic, etc.)

* Difussionless or displacive transformations.

— Martensitic transformations

We need to know the kinetics of diffusion-controlled

phase transformations: 10

Remember recrystallization. The
fraction of transformed phase
follows the Johnson-Mehl-
Avrami (JMA) equation:

y=1-exp (-k-t)
The JMA model only describes

the phenomenon at one
temperature.
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The rate of transformation
also depends on temperature
according to an Arrhenius
equation:

r=r,exp (-Q/RT)

again Q is the activation energy
for the transformation.
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Remember: the recrystallization
rate is an example of the
application of an Arrhenius
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emperature dependence of the rate of ferrite recrystallization in
0.08C-1.45Mn-0.218i steel cold-rolled 25 and 50 pet.

Plotting the same data as a function of the amount of phase
transformed we obtain one curve at each temperature:

Each curve follows
the JMA equation:

y=1-exp (k- t")

0.08C-1.45 Mn-0.21 Si
25pct Cold Rolied
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Note that there is a “nucleation time” too: each transformation
doesn'’t start from t = 0. It takes some time for the transformation
fo start.




Microstructure and Property Changes in Fe-C Alloys
Let’s apply those kinetic models to transformation in steels.

Remember the definition of heat treatment:

A controlled heating and cooling cycle or cycles intended to adjust the
microstructure and mechanical properties of a material for a specific
purpose

Examples: annealings, normalizing, quenching and tempering, etc.

First we'll perform an isothermal annealing in a eutectoid plain carbon
steel. Let's assume we austenitize a eutectoid steel and drop the
temperature just below the eutectoid temp: T, (this is the equilibrium
temperature for the eutectoid transformation)

First, we will study a eutectoid steel annealed just below the eutectoid
temperature.
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What if we choose
a lower
temperature?
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Now let’s trace the isothermal decomposition of austenite at lower temperatures
Remember there are two competing factors that shape the initial transformation line:
+ Degree of instability
+ Diffusivity
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Remember that in all diffusion-driven transformations, the fraction of
transformed phase follows the Avrami equation: y = 1 - e
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When the temperature of
the isothermal bath is too
low, carbon diffusion is

heavily compromised and i i
another type of
transformation takes place. T s ]




A new metastable phase shows up: martensite.

It is the result of fast

cooling a steel starting
from an austenitic
microstructure.
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Martensitic Transformations
They are examples of displacive (diffusionless) transformations. They are not assisted

by diffusion!

Steel martensite starts to form at a given temperature M, and finish forming at another

temperature M;.
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The Role of Carbon in the Shape of Martensite BCT
Crystal Structure
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Note the effect of carbon
levels in martensite’s a and ¢
lattice parameters. That
means the unit cell volume is
also affected.

Hardness and Strength of Fe-C Martensite

Martensite mechanical
properties strongly
depend on the carbon
level in the steel.

Strengthening mechanisms:

» High dislocation densities

in lath martensite

» High dislocation densities

plus solid solution
strengthening plus
twinning deformations in
plate martensite
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Properties of Individual
Microconstituents in Steel

e Pearlite

— Yield strength 200 - 800 MPa

— Tensile strength 600 - 1200 MPa
« Bainite

— Yield strength 800 - 1300 MPa

— Tensile strength 1300 - 1400 MPa
* Martensite

— Yield strength 500 - 1800 MPa

Let’s go back to the TTT curves but now for a hypereutectoid
plain carbon steel with 1.13%C
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Now let'sseea TTT curve for
carbon steel with 0.4%C

a hypoeutectoid plain
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CCT Curves:
Different
Cooling Media

Please, define
the critical cooling

rate CCR.

Sometimes the
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hardenability of a
steel is measured
by the CCR
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Effect of Tempering Temperature in Hardness

This image shows the effect of In this plot, look at the effect of carbon

tempering temperatures and times in i the final hardness of the tempered
the final hardness of a eutectoid steel  steels
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Let's summarize what we've learned about phase
transformations in plain carbon steels:

-Austemte

By controlling the phase selection \
process you can control the final Gl e Ve
mechanical properties of a steel. b il il
These are the main reason for the ——+ - —
many uses of steel: cheap and 2 prowteciad prase | | (o +FesCoases) || (BCT phase)
versatile -

Now, think that you can add \

many elements to diversify Tempred marenste
those properties even more.
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