Navigating the Crystal

Need to know:

- Positions within the crystal
- Directions in the crystal
- And planes of the crystal

> We need a coordinate system centered in a corner of the crystal and where the unit corresponds to the lattice parameter regardless of its magnitude

Miller Indices of Crystallographic Directions

- To calculate the indicated direction:
- Verify the initial and end points of the vector
- Subtract the the head minus the tail: (1,0,0) - (0,0,0) = 1,0,0
- Eliminate fractions if necessary (by multiplying by common denominators)
- Designate the direction as a set of three numbers without commas enclosed by brackets.
- The red direction would be: [100]

- Do the same for the blue direction

Miller Indices of Crystallographic Directions (cont.)

First, write down the coordinates of the head and then the tail of the vector. Then subtract them.

Work on the directions indicated

Miller Indices of Crystallographic Directions (cont.)

Always follow the "recipe"!!!

Miller Indices of Crystallographic Planes

- Use the same coordinate system as before
- Find the points where the plane intersects with each axis (this is the key part)
- Write down the three-number set and invert it: $\mathrm{q}, \mathrm{r}, \mathrm{s} \Rightarrow 1 / \mathrm{q}, 1 / \mathrm{r}, 1 / \mathrm{s}$
- If there are fractions multiply by the common denominator to get integers
- Assign the following nomenclature: ($\boldsymbol{h} \boldsymbol{k} \boldsymbol{l}$)

Miller Indices of Planes (cont.)

Let's practice by finding the Miller indices of the three planes (green, blue and red) indicated.

Always follow the recipe given before.

INGE 4001 - Engineering Materials
More Miller There are four ways of solving this problem, Indices (cont.) resulting in two different sets of Miller

Got it? Now let's do it the reverse way

Draw the (222) plane of this cubic unit cell: Now draw the (130) plane and [210] direction. Easy? Now try this $(3 \overline{1} 0)$ and this ($\overline{2} 0 \overline{3}$)

Homework

Demonstrate that the (111) plane does not pass through the central point of a cubic crystal. You need to do this numerically (geometrically). Hint: Draw the [111] direction and work on it. Now do the same for the ($\overline{1} \overline{1} \overline{1}$) Jlane and calculate the distance between both planes (111) and ($\overline{1} \overline{1} \overline{1})$

Distance Between Equivalent Planes

For cubic crystals this becomes:

$$
d_{\mathrm{hkl}}=\frac{\mathrm{a}}{\sqrt{\mathrm{~h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}}
$$

Crystallographic planes and directions in hexagonal unit cells

INGE 4001 - Engineering Materials

Miller-Bravais indices of directions

- The directions are obtained better by assuming first only three axis: $\mathrm{a}_{1}, \mathrm{a}_{2}$ and c . We obtain then: $h^{\prime} k^{\prime} l^{\prime}$
- Then we do this:

$$
\begin{aligned}
& h=\frac{1}{3}\left(2 h^{\prime}-k^{\prime}\right) \\
& k=\frac{1}{3}\left(2 k^{\prime}-h^{\prime}\right) \\
& i=-\frac{1}{3}\left(h^{\prime}+k^{\prime}\right) \\
& I=l^{\prime}
\end{aligned}
$$

- The values of h, k, i and $/$ may require clearing of the fractions or reducing to lowest integers.

So, what are the Miller Bravais indices of this plane? other plane?

One good way to determine intercepts is by drawing the basal plane and work on it

Determine the indices of all lateral vertical planes of the unit cell
Note that the third Miller Bravais index i is such that: $h+k=-i$. This is true for all planes in hexagonal crystals

Volume Density

Volume Density $=\rho_{v}=\frac{\text { mass /unit cell }}{\text { volume /unit cell }} \begin{aligned} & \text { Theoreticial Density. } \\ & \text { Phis is find out whil why } \\ & \text { theoretical density. }\end{aligned}$
First the mass in one unit cell:

mass =\# atoms • one atom mass

Depends on crystal structure
Estimate using N_{A}
$\begin{aligned} \text { one atommass } & =(\text { atomic weight }) \cdot \frac{1}{\mathrm{~N}_{\mathrm{A}}}\end{aligned}$

$$
[\mathrm{g} / \text { atom }]=\left[\frac{\mathrm{g}}{\mathrm{~mol}}\right] \cdot \frac{1}{\frac{\mathrm{atoms}}{\mathrm{~mol}}}
$$

$$
\begin{aligned}
& \text { Theoretical Density (cont.) } \\
& \rho_{\mathrm{v}}=\frac{\# \text { atoms } \cdot(\text { atomic weight }) \cdot \frac{1}{\mathrm{~N}_{\mathrm{A}}}}{\text { volume of one unit cell }}
\end{aligned}
$$

Units? $\mathrm{In} \mathrm{g} / \mathrm{cm}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$ please!

- Calculate the volume density of copper (FCC) at room temperature
What data do you need?

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{Cu}}=63.546 \\
& \mathrm{R}_{\mathrm{Cu}}=0.1278 \mathrm{~nm}
\end{aligned}
$$

Density of Ceramic Compounds

$$
\rho_{\mathrm{v}}=\frac{\mathrm{n}_{1} \cdot \mathrm{~A}_{1}+\mathrm{n}_{2} \cdot \mathrm{~A}_{2}}{(\text { unitcellvol. }) \cdot \mathrm{N}_{\mathrm{A}}}
$$

A_{1} and A_{2} are the atomic weight of the elements conforming the compound

- Homework: LiF is an ionic solid commonly used in sensors. Calculate its theoretical density. The image on the right will help you. Li+ cations are the red balls and F^{-}anions are the green ones. You will need information about ionic
 radius data. Then compare your calculation with data from the literature.

Planar Atomic Density

$$
\rho_{\mathrm{p}}=\frac{\# \text { atoms with centers intersecte d }}{\text { selected area }}
$$

Consider the (110) plane in a BCC unit cell. How many atoms intersected by the plane?

1 atom in the middle

4 atoms in the corners that contribute $1 / 4 \rightarrow 4 \cdot 1 / 4=1$
Total: $1+1=2$ atoms intersected

INGE 4001 - Engineering Materials

Planar Atomic Density (cont.)

Area of rectangle a^{2}

$$
\rho_{\mathrm{p}}=\frac{2 \text { atomsintersected }}{\sqrt{2} \mathrm{a} \cdot \mathrm{a}}=\frac{\sqrt{2}}{\mathrm{a}^{2}}
$$

Homework: Do the same for the (111) plane in an FCC metal

$$
\rho_{1}=\frac{\text { \# atomic diameters intersected }}{\text { selectedlength of line }}
$$

Consider the FCC unit cell and its [110] direction. So how many diameters does [110] cross?

And what is the length?

$$
\rho_{1}=\frac{2}{\sqrt{2} a}
$$

Examples:
-Ca FCC, BCC, HCP
-Co FCC, HCP
γ-Fe
-Mn BCC, FCC
-Ti HCP, BCC
-Y HCP, BCC

- Pu has six! \rightarrow Investigate!!
$\alpha-\mathrm{Fe}$
Also please find three more examples

Polymorphism or Allotropy (cont.)

Volume change ΔV during phase transtormation

Exercise:

Find $\Delta \mathrm{V}$ for an $\mathrm{FCC} \rightarrow \mathrm{BCC}$ phase change. Does the material expand or contract (shrink)?
In $\mathrm{BCC} \quad \mathrm{a}_{\mathrm{BCC}}=\frac{4 \mathrm{R}}{\sqrt{3}}$ In FCC $\quad \mathrm{a}_{\mathrm{FCC}}=\frac{4 \mathrm{R}}{\sqrt{2}}$
Volume per atom:

$$
\mathrm{V}_{\mathrm{BCC}}=\frac{\mathrm{a}_{\mathrm{BCC}}^{3}}{2} \quad \mathrm{~V}_{\mathrm{FCC}}=\frac{\mathrm{a}_{\mathrm{FCC}}^{3}}{4}
$$

Change in volume from FCC to BCC:

$$
\frac{\Delta V}{V_{F C C}}(\%)=\frac{V_{B C C}-V_{F C C}}{V_{F C C}} \cdot 100 \quad \text { Sign? }
$$

Polymorphism or Allotropy (cont.)

Upon heating, at about $13^{\circ} \mathrm{C}$, gray tin (α - Sn) undergoes a phase transformation to white tin ($\beta-\mathrm{Sn}$).
$\alpha-\mathrm{Sn}$ has a diamond cubic structure (like C and Si) with lattice parameter: $a=0.649 \mathrm{~nm}$. β-Sn has a bodycentered tetragonal structure (BCT) with lattice constants $a=0.583 \mathrm{~nm}$ and $\mathrm{c}=0.318 \mathrm{~nm}$.
a) Calculate the theoretical density of the two phases.
b) Calculate the volume change upon cooling, i.e. when Sn goes from β to α.

