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Abstract
The stress required to deform a perfect crystal to its elastic limit while maintaining

perfect periodicity, the so-called ideal strength, sets the gold standard for the strength of
a given material. Materials this strong would be of obvious engineering importance,
potentially enabling more efficient turbines for energy production, lighter materials for
transportation applications, and more reliable materials for nuclear reactor applications.
In practice, the strength of engineering materials is often more than two orders of
magnitude less than the ideal strength due to easily activated deformation processes
involving dislocations. For many materials, precipitate strengthening is a promising
approach to impede dislocation motion and thereby improves strength and creep
resistance. This observation begs the question: What are the limits of nanoparticle
strengthening? Can the ideal strength of a matrix material be reached? To answer
these questions, we need a detailed, atomic scale understanding of the interactions
between dislocations and obstacles. Fortunately, simulations are beginning to explore
this interaction.
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and semiconductors,9 and since then, dis-
cussions of mechanical properties beyond
the elastic limit have focused on disloca-
tions and fracture.

Computational materials scientists,
however, have begun to reconsider the
importance of ideal strength calculations
and have made some remarkable discov-
eries. For example, accurate ideal strength
calculations for Mo indicate that it can
yield very near its ideal strength during
nanoindentation experiments.10 At the
nanoscale, a material can reach ideal
strength.

From an engineer’s perspective, ideal
strength sets the absolute engineering
limit for the strength of a material. It is 
not possible to design a microstructure
that will enable a material to exceed its
ideal strength. However, the fact that ideal
strength can be reached at the nanoscale
begs the question: Can ideal strength be
reached in a bulk material?

There are at least two criteria that must
be met for an engineering material to
achieve a strength that approaches its
ideal value.11 First, from engineering relia-
bility considerations, the material must be
intrinsically ductile: When the material is
pulled in tension, it must ultimately fail in
shear, regardless of the tensile axis.
Second, dislocations, if present, must be
immobile at all stresses below the ideal
strength.

Continuum Theory
There are a number of factors1 that

might lead to dislocation immobilization.
Here, we are interested in obstacle-
 controlled glide where the obstacles are
nanoscale precipitates embedded within
the host matrix. In the usual case, the pre-
cipitate is an impediment to dislocation
motion because it breaks translation sym-
metry. The most simple continuum model
of dislocation precipitate interactions
treats the obstacles as pinning points that
are capable of exerting only a contact
force on the dislocation, and treats the
dislocation as a line of constant tension.
The interaction of a dislocation with a sin-
gle obstacle of this type is shown in
Figure 1a. Once the dislocation contacts
the obstacle, it begins to bow about it. As
it bows, it exerts a force F = 2Γcos (ϕ/2) on
the obstacle, with Γ being the line tension
of the dislocation. When the bowing
angle, ϕ, decreases to a critical value, ϕc,
corresponding to the maximum force an
obstacle can withstand, the obstacle is
bypassed.

A single obstacle cannot arrest the
motion of a dislocation. However, a finite
density of obstacles can pin a dislocation.
The obstacles in most materials are

Introduction
Today, the need for improved structural

materials remains strong, particularly if
one considers the need to develop materi-
als well suited for energy generation. We
need radiation tolerant materials for
nuclear reactors; materials for turbines
that can withstand higher operating tem-
peratures; and materials for transporta-
tion that are lighter, tougher, and stronger
than those presently available.

Computational hardware and theoreti-
cal advances give one hope that genuine
prediction of the mechanical properties of
materials is achievable. However, there are
still significant barriers to be overcome.
Mechanical properties of materials are
often dictated not by the average structure
of the material but rather by the struc -
ture and dynamics of the extended defects
(e.g., dislocations, grain boundaries, and
precipitates) within the material. The
dynamic properties of these defects, how-
ever, are difficult to compute directly using
quantum mechanics-based total-energy
methods. The number of atoms necessary
to do so exceeds available computational

resources and will for years to come.
However, the materials theory community
has made progress on a number of impor-
tant fronts, including predicting the struc-
tures of dislocation cores and the
structures of precipitates.1–4 In fact, mod-
ern empirical inter-atomic potentials now
enable simulation of the dynamics of mil-
lions of atoms and consequently direct
study of certain aspects of dislocation/pre-
cipitate interactions.

The ideal strength of a material is the
stress required to strain it to its elastic limit
while maintaining perfect periodicity. In
1926, Frenkel deduced that a typical metal
should have an ideal shear strength on the
order of one-fifth its shear modulus.5
Because the metals of the time had
strengths nearer to one one-thousandth of
their shear modulus, Frenkel’s estimate
was puzzling. Over the next few decades,
however, the existence of dislocations
would be postulated as the origin of the
discrepancy.6–8 The development of elec-
tron microscopy in the 1950s made it pos-
sible to image dislocations within metals
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arranged in a somewhat random fashion,
as shown in Figure 1b, and a statistical
analysis of the dislocation/precipitate
interaction is required. Kocks proved that
there is a critical stress (τc) for the passage
of a dislocation through a disordered
array of infinitely strong point obstacles.12

Foreman argued that the number of
defects in contact with a dislocation varies
as τ−1/3 (τ is shear stress), and this leads to
the prediction13 that

(1)

with l defined to be the average distance
between obstacles in the slip plane of the
gliding dislocation with a Burgers vector
of magnitude b. Later, Morris et al.14–22 and
Labusch23 extended the  theory to consider
the more realistic  situation of random
arrays of obstacles with variable strengths
and sizes. These effects contribute numer-
ical corrections to the critical stress for sus-
tained motion of a  dislocation, which now
is given by:

(2)

with α being a numerical factor reflect-
ing the geometric arrangement of obsta-
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cles (approximately equal to 0.9 for ran-
domly distributed obstacles) and βc
being the dimensionless strength of the
obstacles. The maximum resistance of an
obstacle that is “looped” is lowered by
the mutual attraction of the arms of the
dislocation as they wrap around it, with
the consequence that the maximum
value of the obstacle strength, βc, drops
from 1.0 in the point obstacle model to
about 0.7 in the multiple obstacle model,
depending on obstacle sizes and config-
uration.24

It is worthwhile to compare the critical
stress predicted by Equation 2 to the ideal
shear strength of the material. Typically,
the ideal shear strength of a material
scales with the shear modulus (G) accord-
ing to τideal = ηG, with η being a constant
of the order 0.1. Equating the ideal shear
strength to the critical stress for disloca-
tion motion yields the average obstacle
spacing, lc, required to pin dislocations at
the ideal shear strength:

, (3)

with K being the dislocation energy coeffi-
cient. For an elastically isotropic material,
lc ≈ 5b, a spacing that corresponds to a very
high density of obstacles.

lc = bK
G

αβc
3/2

η

Experimental Background
The most detailed experimental under-

standing of dislocation/defect interac-
tions comes through the study of simple,
model alloys. Al-Sc alloys are a convenient
system for the exploration of the disloca-
tion/precipitate interactions. Through
aging experiments, one can precipitate
Al3Sc particles and control their size and
spacing.25 Further, the temperatures
required for coarsening exceed those nec-
essary to observe dislocation mediated
creep, so both constant strain rate and
creep tests can be conducted on alloys
with constant microstructure.

Consider dislocation motion under con-
stant strain rate conditions. For small
 precipitates, on the order of 1.4 nm in
diameter, dislocations bypass the preci -
pitates during constant strain rate ex -
periments by cutting through them.
Interestingly, one piece of evidence for this
stems from the different structure of dislo-
cations in the Al matrix and the L12
ordered Al3Sc precipitates. Both the L12
phase and the matrix phase are cubic.
However, the Burgers vector of the L12
phase is twice as long as that for the
matrix phase. The net result is that pas-
sage of a single dislocation through the
precipitate is accompanied by the produc-
tion of an antiphase boundary. The pas-
sage of a second dislocation eliminates the
boundary, and this leads to a binding of
the dislocations within the precipitate
(Figure 2a). Observation of this pinning in
post-deformation transmission electron
microscopy (TEM) experiments is proof
that dislocations cut small precipitates.25

Similar observations suggest precipitate
cutting in other materials.26,27

For longer aging times, the precipitates
increase in size. Concomitantly, the larger
spacing between obstacles enables their
bypass through Orowan bowing. This
behavior is observed in Al-Sc for average
particle sizes of 5.9 nm (Figure 2b). For
Orowan bypass and precipitate cutting
mechanisms, the predicted yield strength
enhancements are in good agreement
with the predictions of simple theories.25

Creep experiments are also insightful.
There is a threshold stress below which
the steady state strain rate vanishes. In a
cursory analysis of creep experiments, this
threshold stress appears as a large stress
exponent for the steady state creep rate.
The existence of a threshold stress is, in
fact, what one expects for precipitate
strengthening. However, in the case of Al-
Sc alloys, this threshold stress is well
below the stress expected from interparti-
cle spacings and Orowan bowing. The
reason for this is quite simple: under creep
conditions, the dislocations are able to
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Figure 1. (a) The interaction of a dislocation with a precipitate. The bowing angle, ϕ, is
indicated. The time sequence is numbered, with (1) indicating the earliest time. The
dislocation bows about the point obstacle until ϕ reaches a critical value, and the dislocation
unpins from the obstacle. (b) In crystals, the obstacles are arranged in an irregular pattern,
and their sizes and strengths vary. (c) If one considers the obstacles to have finite size, they
can be bypassed through an Orowan bowing mechanism in which a dislocation loop is left
behind. Again, the sequence is numbered according to time. (d) Time sequence of the
cutting of a precipitate by passage of an edge dislocation. (e) The bypass of an obstacle via
dislocation climb.
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climb in order to avoid interactions with
obstacles (Figure 1e). The dislocations
thus exploit thermally activated, stress-
driven, nonconservative processes to
bypass obstacles.

Performing straining experiments
within a TEM provides, perhaps, the most
direct information regarding disloca-
tion–defect interactions. In situ experi-
ments have been conducted in Fe-Cu
alloys,28–31 Al alloys,32–34 and on irradiated
or quenched fcc metals35–37 and have been
used to measure the average distance
between pinning points within a single
dislocation, as well as to estimate the
strengths of obstacles.

Nogiwa et al.28,29 have studied the inter-
action of dislocations and precipitates in
Fe–Cu alloys. They used the observed
bowing angles at unpinning to estimate
the strength of precipitates less than 4 nm
in diameter. They found that on average,
for their Fe–1.0 wt% Cu alloy aged 20 min-
utes at 525°C, a screw dislocation with an
average obstacle spacing of 111 nm unpins
when cos(ϕc/2) = 0.22. Using the model
of Foreman and Makin,13,38 they deduced
that the yield strength of their alloy
should have increased by 76 MPa
relative to the sample that was not aged.
The experimentally observed increase
was 70 MPa, yielding very satisfactory
agreement.

Atomic Scale Modeling of
Dislocation/Nanoparticle
Interactions

Experiments described in the previous
section provide ample incentive to con-
struct atomic scale models of dislocation–

precipitate interactions, and the develop-
ment of such simulations is proceeding
rapidly. In developing these simulations, a
number of factors must be considered.
First, the stress and strain fields associ-
ated with dislocations are long-ranged.
Consequently, the applied boundary con-
ditions are an important aspect of the prob-
lem. Second, the study of dynamics must
be conducted with care. Molecular dynam-
ics simulations are capable of following
dynamics over time periods on the order of
nanoseconds. Experimentally, dislocation-
based plasticity can evolve over hours,
days, and even years. Extrapolating over
time spans this large is not trivial.

A model developed in Reference 39
resolves some of the problems mentioned
previously. In this model, a crystal con-
taining an initially straight infinite edge
dislocation is simulated. Periodic bound-
ary conditions are applied along the initial
dislocation line direction and the direction
of the Burgers vector. This configuration
places a net bending stress on the super-
cell used in the calculation. The effects of
this bending stress are minimized by plac-
ing the dislocation on the central glide
plane of the unit cell along the bending
neutral axis. The model enables the study
of motion over significant distances and a
range of obstacle densities, sizes, and sys-
tem temperatures.

Fe–Cu alloys form a prototypical sys-
tem for atomic scale study using empirical
potentials.40,41 The Cu in these alloys ini-
tially precipitates within the bcc phase,
and small particles are coherent with the
Fe lattice. As particle sizes increase, the
particles transform to a 9R and then to a

3R structure, which are commonly
observed at low temperatures in some
materials that are bcc at room tempera-
ture.30 The 9R structure can be thought of
as an fcc structure with a stacking fault
every third plane so that its stacking
sequence is ABCBCACABABC; the 3R
structure is a bit more complicated.
Though a number of important observa-
tions emerged from simulations of this
materia1,42,43 here we focus on a subset of
the conclusions.

Atomic scale simulations enable direct
measurement of ϕc. The critical stress and
bowing angles observed in atomic scale
simulations indicate that the simple line
tension model overestimates the strength of
the array. At higher bowing angles, the elas-
tic attraction between dislocation segments
attached to the precipitate becomes sub-
stantial (Figure 3) and assists the dislocation
in bowing through the obstacle array.

Atomic scale simulations also allow one
to assess more directly the importance of
precipitate size. A continuum theory for a
periodic array of obstacles reflecting dislo-
cation self stress predicts:

(4)

where G is the shear modulus, d the diam-
eter of the obstacles, l the distance
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Figure 2. Dislocations interacting with precipitates in an Al–Sc alloy. (a) The arrows point to
dislocations that have become paired within Al3Sc precipitates. The precipitates in this alloy
are approximately 1.4 nm in diameter. (b) Dislocation loops surrounding precipitates. 
The precipitates in this alloy are, on average, 5.9 nm in diameter. The loops (indicated 
by arrows) are strong evidence of Orowan bowing, as shown in Figure 1c. Images from
Reference 25. Reprinted with permission. © 2002, Elsevier.

Figure 3. Dislocation configurations at
the critical bypass stress as predicted
by atomic scale simulations.42 The initial
edge dislocations are in α-Fe and are
interacting with Cu precipitates. The
lines correspond to the positions of the
dislocation cores, and the results of
several calculations are shown. The size
of the precipitate (in nm) labels each
configuration, and the bowing angle is
indicated. For small precipitates, the
obstacles are bypassed by cutting. At
larger precipitate sizes, cutting is still
predominant, but the dislocation bowing
angle decreases to zero, allowing
dislocation self-interactions to approach
those associated with Orowan bowing.



between obstacle edges, and B a constant
reflecting the atomic scale properties of
the obstacles.24 (For impenetrable obsta-
cles, B ≈ 0.7; for voids, B ≈ 1.52.) Figure 4
plots the critical stress for obstacle bypass
obtained from the simulations42 as sug-
gested by Equation 4. Though the rela-
tionship determined from atomic scale
simulations is linear, Equation 4 underes-
timates the slope of the line by a factor of
two (or so) and overestimates the value of
B substantially.

Examination of the atomic scale simula-
tions reveals a possible origin of the devi-
ation. Precipitate cutting dominates at all
precipitate sizes. However, for larger pre-
cipitates, the critical bowing angle
approaches ϕc = 0, and the dislocation
passing through the precipitate leaves
behind both interstitials and vacancies.
Thus the bypass mechanism depends on
size, and the strength of the precipitates
increases more rapidly with diameter than
expected from the continuum model.

Atomic scale simulations in this system
also have suggested another interesting
mechanism for precipitate strengthening
in these alloys. The dislocation core struc-
ture within the precipitate differs from
that in the matrix, and this allows another
type of interaction between the disloca-
tion and the precipitate:44,45 a reduction of
dislocation core energy when within the
precipitate. This strengthening effect is
estimated to be substantial, leading to
strength enhancements on the order of 350
MPa for the configurations studied.45

Recently, more detailed studies of the
interaction of screw dislocations with Cu
precipitates have been conducted. Shim
et al.43 simulated a screw dislocation
driven to bypass an initially bcc Cu pre-
cipitate in Fe. They observed that screw
dislocations can induce a martensitic
phase transformation within the precipi-
tate (Figure 5). Specifically, for precipitates
with a diameter of 2.5 nm and an applied
stress of 1 GPa, when the dislocation first
makes contact with the precipitate, the
internal structure of the precipitate
changes: Some atoms have a local coordi-
nation expected for hcp and, to a lesser
extent, for fcc lattices. As the interaction
continues, the extent of the transformation
spreads, reaches a maximum, and then
begins to decline as the dislocation
bypasses the obstacle through an Orowan
looping mechanism. The transition
appears to be driven by the large disloca-
tion and applied stresses. Its observation,
even only as a transient effect, is com-
pelling evidence that dislocations can alter
the internal structure of precipitates, as
suggested by multiple analyses.30,43,46 This
transformation is not observed for edge

dislocations, which typically cut precipi-
tates of this size in similar simulations.
Shim et al.43 conclude that the transforma-
tion of the precipitate increases its resist-
ance to cutting. In more general terms, the
internal structure of the nanoprecipitate
can make a substantial contribution to its
strength.

Atomistic-calculation based estimates
of the critical stress for edge dislocation
motion in the Fe-Cu system vary substan-
tially. Nedelcu et al. estimated that for pre-
cipitates approximately 3 nm in diameter
with a density of one every 7 nm, the crit-
ical stress for dislocation passage is
approximately 5.1 GPa,47 an appreciable
fraction of the ideal shear strength of Fe
computed using density functional theory,
7–8 GPa.48 More recent analyses, however,
suggest a smaller critical stress for the
same problem.42 Clearly, more research is
needed to resolve this discrepancy and to
establish reliable methods for estimating
critical stresses for dislocation passage.

Conclusions
Given these observations, we now can

return to the question posed in the title of
this article. As noted in the discussion of
Equation 3, the density of obstacles
required to pin a dislocation at the ideal
shear strength for an elastically isotropic
material is very high. So high, in fact, that
ideal strength is probably not accessible
via precipitate strengthening, regardless
of the strength of the precipitates.
However, Equation 3 still leaves at least
one avenue by which ideal strength might
be reached through precipitate strength-
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Figure 4. Dependence of critical stress
for obstacle bypass on the size and
separation of obstacles.42 The line is
the prediction of Reference 24.
Symbols are the results for precipitate/
dislocation interactions.42 The diameter
of the obstacles is given by d, G is the
shear modulus, b is the magnitude of
the Burgers vector, and l is the spacing
between obstacles.
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Figure 5. A screw dislocation in Fe
interacting with a 2.5-nm diameter Cu
precipitate.43 The frames (a)–(d) show
successive configurations in time for a
dislocation driven by a stress of 1 GPa.
Yellow atoms are (locally) bcc, red are
fcc, and green are hcp. The precipitate
transforms while the dislocation is
interacting with the precipitate, and then
it transforms back to the bcc structure.

ening. Most materials are not elastically
isotropic, and consequently, K/G ≠ 1.
Hence a material’s susceptibility to precip-
itate strengthening depends on its elastic
constants. Further, if one can increase sub-
stantially the value of K/G, one may be
able to reach ideal strength through pre-
cipitate strengthening.

Toyota Research recently introduced a
class of Ti–Nb-based alloys it refers to as
“Gum Metal.”49 These alloys have a num-
ber of interesting properties: high yield
strength on the order of 1.2 GPa, an elastic
limit of 2.7% strain, and 10% elongation
with no noticeable work hardening.
Further, TEM examination of the post-
deformation microstructure did not reveal
the presence of obvious dislocations but
instead identified large planar faults, an
observation that led Saito et al. to suggest
that Gum Metals are deforming at or near
their ideal strength.49
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The possibility that Gum Metals are
deforming at or near their ideal strength is
intriguing. In designing Gum Metal, the
goal was to modify the material to the
point where C11 – C12 ≈ 0, with C11 and C12
being two of the elastic stiffness constants
for a cubic material. Under these circum-
stances, the (on average) bcc lattice of
Gum Metal becomes unstable with
respect to an (on average) hcp structure.
Interestingly, an anisotropic elasticity the-
ory analysis of the ratio K/G for the pre-
dominant slip systems in the bcc alloy
shows that K/G → ∞ as C11 – C12 → 0.11

Gum Metals were designed, in effect, to
have dislocations easily pinned by obsta-
cles and are thus exceptional candidates
for nanoparticle strengthening, perhaps
even to very near their ideal limit.

Thus the limit of precipitate strengthen-
ing is determined by both the strength of
the nanoscale precipitates and the linear
elastic properties of the matrix. Both of
these aspects of the problem can be
addressed directly using modern compu-
tational methods, and one can now
explore, in detail, the limits of nanoparti-
cle strengthening.
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