RECTIFIERS INEL4076 - Spring 2013

Half-Wave Rectifier Circuit with Resistive Load

For positive half-cycle of input, source forces positive current through diode, diode is on, $v_o = v_s$.(assuming $v_D = 0$. Otherwise $v_O = v_s - v_D$ when $v_s > v_D$)

During negative half cycle, negative current can't exist in diode, diode is off, current in resistor is zero and $v_o = 0$.

CVD = constant voltage drop

Using CVD model, during on state of diode v_o = $(V_P \sin \omega t) - V_{on}$. Output voltage is zero when diode is off.

Often a step-up or step-down transformer is used to convert 120 V-60 Hz voltage available from power line to desired ac voltage level as shown.

removed using filter capacitor.

Ripple voltage V_r : peak-to-peak value of variations of load voltage.

$$i_C = C \frac{\Delta v_C}{\Delta t} = \frac{v_{L,dc}}{R}$$

Let $v_{L,dc} \simeq V_{L,peak} - V_r/2$ and $\Delta t = 1/f$ where f is the frequency

$$V_r \simeq \Delta v_C = \frac{v_{L,dc} \times \Delta t}{RC} \simeq \frac{v_{L,peak} - V_r/2}{fRC}$$

$$V_r \simeq \frac{v_{L,peak}}{fRC} \frac{1}{1 + \frac{1}{2fRC}}$$

 $V_{P} - V_{on}$ $V_{P} - V_{on}$ $V_{P} - V_{on}$ V_{r} V_{r} V_{r} ΔT U_{S} $U_{$

 $_{R} \overset{+}{\underset{v_{O}}{\overset{+}{\overset{}}}} v_{O}$

 $_{S} = V_{P} \sin \omega t$ C

If $V_r \ll V_{L,peak}$,

$$V_r \simeq \frac{v_{L,peak}}{fRC}$$

To select C to obtain a specific V_r , use

$$C = \frac{v_{L,peak} - V_r/2}{fRV_r}$$

Example: Find ripple voltage if the secondary voltage $V_{S,rms} = 12.6V$, f = 60Hz, $R = 15\Omega$, $C = 25,000\mu F$, and the diode's voltage drop $V_{ON} = 1V$.

$$V_{S,peak} = \sqrt{2} \times V_{S,rms} = 12.82V$$

$$v_{L,peak} = V_{S,peak} - V_{ON} = 11.82V$$

$$fRC = 60 \times 15\Omega \times 25 \times 10^{-3}F = 22.5$$

$$V_r = \frac{v_{L,peak}}{fRC} \frac{1}{1 + \frac{1}{2fRC}} = \frac{11.82V}{22.5} \frac{1}{1 + \frac{1}{2 \times 22.5}} = 0.52V$$

Example: Find C necessary to obtain $V_r = 0.2V$ if $V_{S,rms} = 12.6V$, f = 60Hz, $R = 15\Omega$, and $V_{ON} = 1V$.

$$C = \frac{V_{L,peak} - V_r/2}{fRV_r} = \frac{11.82V - 0.1V}{60 \times 15\Omega \times 0.2V} \simeq 65000\mu F$$

Example: Find C necessary to obtain $V_r = 0.2V$ if $V_{S,rms} = 12.6V$, f = 60Hz, $R = 1k\Omega$, and $V_{ON} = 1V$.

$$C = \frac{V_{L,peak} - V_r/2}{fRV_r} = \frac{11.82V - 0.1V}{60 \times 1k\Omega \times 0.2V} \simeq \boxed{1000\mu F}$$

Peak inverse voltage (PIV) rating of the rectifier diode gives the breakdown voltage.

When diode is off, reverse-bias across diode is $V_{dc} - v_s$. When v_s reaches negative peak,

PIV ~ 2VS, PEAK

PIV value corresponds to minimum value of Zener breakdown voltage for rectifier diode.

Full-wave rectifier with center-tap transformer

Full-wave rectifiers cut capacitor discharge time in half and require half the filter capacitance to achieve given ripple voltage. All specifications are same as for half-wave rectifiers.

Reversing polarity of diodes gives a fullwave rectifier with negative output voltage.

To find C or V_r use same formulae with f = 120HzPIV $\approx 2V_{S, PEAK}$

Full-wave rectifier with bridge circuit

Requirement for a center-tapped transformer in the full-wave rectifier is eliminated through use of 2 extra diodes.All other specifications are same as for a half-wave rectifier except $PIV=V_P$.

Rectifier Topology Comparison

- Filter capacitor is a major factor in determining cost, size and weight in design of rectifiers.
- For given ripple voltage, full-wave rectifier requires half the filter capacitance as that in half-wave rectifier. Reduced peak current can reduce heat dissipation in diodes. Benefits of full-wave rectification outweigh increased expenses and circuit complexity (a extra diode and center-tapped transformer).
- Bridge rectifier eliminates center-tapped transformer, PIV rating of diodes is reduced. Cost of extra diodes is negligible.