Practice Problem Set 1 for Exam 3

1. Design a sequence detector. The circuit has one 1 -bit input x and one 1 -bit output z. The output becomes a logic 1 for one clock cycle if the sequence 0010 (two 0 , followed by a 1 and then by a 0) is detected in the input \boldsymbol{x}. Overlapping sequences should be detected. Your solution should include:
a. state diagram and state transition table. Use sequential state codes.
b. K-maps to minimize the combinational part of the circuit for the least-significant state bit only using a JK flip flop. Show the resulting Boolean algebra equations for J and K.
c. Repeat part b for the second bit using a T flip flop.
2. Design a 3-bit UP/DOWN counter. The device has a single-bit input UP/DOWN. It should repeatedly count from 0 to 7 if the UP/DOWN is logic-1, and from 7 to 0 otherwise. Use T flip flops.
3. Design a circuit that will repeatedly go through the following binary sequence: $0,1,2,4,6$. Use D type flip flops.
4. Show how to implement a JK flip flop using a 2×1 multiplexer, inverters, and a D flip flop. (Hint: Use the flip flop's Q as the multiplexer's select bit)
5. A circuit has two JK flip flops, one input x and one output z. Determine the output sequence for an input sequence of 01011011101111010 if the combinational part of the circuit is governed by the following logic equations:

$$
J_{A}=B x \quad K_{A}=B^{\prime} x \quad J_{B}=A^{\prime} x \quad K_{B}=A+x \quad z=A x^{\prime}+B x
$$

6. Find the state diagram for a circuit capable of detecting the following sequences: 010 or 1001. The circuit's output should become logic-1 when either 010 or 1001 are received in its 1-bit serial input. Perform a state reduction step to eliminate any states that are not needed. Draw the diagram for (a) a Moore FSM, and (b)a Mealy FSM. Overlapping sequences are allowed.

Table 5-1
Flip-Flop Characteristic Tables

\boldsymbol{J} Flip-Flop			
J	K	$Q(t+1)$	
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$Q^{\prime}(t)$	Complement

D Flip-Flop		
D	$Q(t+1)$	
0	0	Reset
1	1	Set

Flip-Flop		
T	$Q(t+1)$	
0	$Q(t)$	No change
1	$Q^{\prime}(t)$	Complement

(1)

$$
\begin{aligned}
& S_{0}=000 \\
& S_{1}=001 \\
& S_{2}=010 \\
& S_{3}=011 \\
& S_{4}=100
\end{aligned}
$$

 $x \nmid$ notused
J_{C}

$$
\begin{aligned}
T_{B}=C x^{\prime} & +B C \\
& +A x^{\prime}
\end{aligned}
$$

$$
+A x^{\prime}
$$

(2)

let x in be $v_{p} /$ Down
(2) cont.

$$
\begin{aligned}
& \text { TA } \begin{array}{l}
\text { TAC } \\
x_{\text {in }} A \\
00 \\
0
\end{array} \left\lvert\, \begin{array}{ll|l|l|l|}
\hline & 00 & 01 & 11 & 10 \\
0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 \\
\hline & 0 & 0 & 1 & 0 \\
\hline 10 & 0 & 0 & 1 & 0 \\
\hline
\end{array}\right. \\
& \begin{array}{ll}
T_{A} & =\bar{x}_{\text {in }} \bar{B} \bar{C}+x_{\text {in }} B C \\
\hline
\end{array}
\end{aligned}
$$

TB

$$
T_{B}=\overline{x_{\text {in }}} \bar{c}+x_{\text {in }}
$$

$$
T_{c}=1
$$

$$
\begin{aligned}
& D_{A}=A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime} \\
& D_{A}=A \bar{B}+A^{\prime} B
\end{aligned}
$$

$$
D B=A B^{\prime} C^{\prime}+A^{\prime} B^{\prime}
$$

$$
\begin{aligned}
& D B=A B C \\
& D B=C+A B^{\prime}
\end{aligned}
$$

$$
D C=A^{\prime} B^{\prime} C^{\prime}
$$

$D C \rightarrow$ only a single 1 no reduction possible
(4)

$\left.\begin{array}{c|cc|c}Q & J & K & Q(t+1) \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right\} \quad D=I \quad$ whin $Q(t)=0$

Nota: la tabla tiene un error; las posiciones sexta y septima deberian estar intercambiadas
(6) 厄 010 or 1001

next				
	$x=0$	$x=1$	output	
S_{0}	S_{1}	S_{4}	0	
S_{1}	S_{1}	S_{2}	0	
S_{2}	S_{3}	S_{4}	0	
S_{3}	S_{6}	S_{2}	1	
S_{4}	S_{5}	S_{4}	0	
S_{5}	S_{6}	S_{2}	0	
S_{6}	S_{1}	S_{7}	0	
S_{7}	S_{3}	S_{4}	1	

the are no equivalent states
note: output ion only indicated
for states where it is 1 .
States without an output have it equal to d
(b)

	we xt		output	
	$x=0$	$x=1$	$x=0$	$x=1$
S_{0}	S_{1}	$S_{2} S_{4}$	0	0
S_{1}	S_{1}	S_{2}	0	0
S_{2}	S_{3}	S_{2}	S_{4}	1
S_{3}	S_{6}	S_{2}	0	0
S_{4}	$S_{3} S_{5}$	S_{4}	0	0
S_{5}	S_{6}	S_{2}	0	0
S_{6}	S_{1}	$S_{7}^{S_{2}}$	0	1
S_{7}	S_{3}	S_{4}	1	0

$S_{7} \& S_{2}$ are equivalent $S_{5} \& S_{3}$ are equivalent $S_{4} \&_{4} S_{2}$ are equivalent

(6)

	$x=0$	$x=1$	$x=0$	$x=1$
S_{0}	S_{1}	S_{4}	0	0
S_{1}	S_{1}	S_{2}	0	0
S_{2}	S_{3}	S_{4}	1	0
S_{3}	S_{6}	S_{2}	0	0
S_{4}	$S_{5} S_{3}$	S_{4}	0	0
S_{5}	S_{6}	S_{2}	0	0
S_{6}	S_{1}	$S_{7} S_{2}$	0	1
S_{7}	S_{3}	S_{4}	1	0

S_{7} is equivalent to S_{2}
S_{5} is " " S_{3}
re-label S_{6} as S_{5}

	$x=0$	$x=1$	$x=0$	$x=1$
S_{0}	S_{1}	S_{4}	0	0
S_{1}	S_{1}	S_{2}	0	0
S_{2}	S_{3}	S_{4}	1	0
S_{3}	S_{5}	S_{2}	0	0
S_{4}	S_{3}	S_{4}	0	0
S_{5}	S_{1}	S_{2}	0	1

new state diagram

