GATE-LEVEL MINIMIZATION INEL 4205 - Spring 2012

Fig. 3-2 Representation of Functions in the Map

					N 17		у		
				x	00	01	11	10	
m_0	m_1	<i>m</i> ₃	<i>m</i> ₂	0	x'y'z'	x'y'z	x'yz	x'yz'	
m_4	<i>m</i> ₅	m_7	<i>m</i> ₆	$x \left\{ 1 \right\}$	xy'z'	xy'z	xyz	xyz'	
							z	-	
(a)						(b)			

Fig. 3-4 Map for Example 3-1; $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Fig. 3-5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Fig. 3-6 Map for Example 3-3; $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Fig. 3-7 Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B

Example: $f(w,x,y,z) = \sum (0,1,2,4,5,6,8,9,12,13,14)$

Fig.3-10 Map for Example 3-6; A'B'C + B'CD' + A'BCD'+ AB'C' = B'D' + B'C' + A'CD'

PRIME IMPLICANTS

- In choosing adjacent squares in a map, we must ensure that
 - all the minterm of the function are covered when we combine the squares
 - the number of terms in the expression is minimized
 - there are no redundant terms (i.e. minterms covered by other terms)
- <u>Prime implicant (PI)</u>: product term obtained by combining the maximum possible number of adjacent squares.
- If a minterm in a square is covered by only one PI then the PI is essential.
- To avoid redundant terms, do (1) essential prime implicants, (2) prime implicants, (3) other terms

Fig. 3-11 Simplification Using Prime Implicants

Map in (b): do the I's in (a) first, then CD and AB'

Example: F(A,B,C,D,E) = A'B'E' + BD'E + ACE

Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE

$\sum (0,1,2,5,8,9,10)$

- Example 3-8: Simplify to a minimal expression using the:
 - I's to produce a sum of products (AND-OR)
 - O's to produce a complemented sum of products (AND-NOR)
 - O's to produce a product of sums (OR-AND)
 - I' to produce a complemented product of sums (OR-NAND)

Fig. 3-14 Map for Example 3-8; $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$ = B'D'+B'C' + A'C'D = (A' + B')(C' + D')(B' + D)

Fig. 3-15 Gate Implementation of the Function of Example 3-8

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Fig. 3-16 Map for the Function of Table 3-2

Fig. 3-17 Example with don't-care Conditions

Fig. 3-18 Logic Operations with NAND Gates

Friday, February 17, 12

Fig. 3-20 Three Ways to Implement F = AB + CD

Fig. 3-23 Implementing F = (AB' + A'B)(C+D')

Fig. 3-24 Logic Operations with NOR Gates

Fig. 3-25 Two Graphic Symbols for NOR Gate

Fig. 3-26 Implementing F = (A + B)(C + D)E

Fig. 3-27 Implementing F = (AB' + A'B)(C + D') with NOR Gates

Fig. 3-33 Map for a Three-variable Exclusive-OR Function

Fig. 3-34 Logic Diagram of Odd and Even Functions

Fig. 3-35 Map for a Four-variable Exclusive-OR Function

(a) 3-bit even parity generator

(a) 4-bit even parity checker

Fig. 3-36 Logic Diagram of a Parity Generator and Checker

	0ns 20ns 40ns 60	ons 80ns 100ns	120ns 140ns	160ns 180ns
stimcret.A	1			
stimeret.B	\			
stimcret.C	1			
stimeret.x				
stimeret.y				

Fig. 3-38 Simulation Output of HDL Example 3-3