GATE-LEVEL MINIMIZATION INEL 4205 - Spring 2012

Fig. 3-1 Two-variable Map

Fig. 3-2 Representation of Functions in the Map

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}

(a)

(b)

Fig. 3-3 Three-variable Map

Fig. 3-4 Map for Example 3-1; $F(x, y, z)=\Sigma(2,3,4,5)=x^{\prime} y+x y^{\prime}$

Fig. 3-5 Map for Example 3-2; $F(x, y, z)=\Sigma(3,4,6,7)=y z+x z^{\prime}$

Fig. 3-6 Map for Example 3-3; $F(x, y, z)=\Sigma(0,2,4,5,6)=z^{\prime}+x y^{\prime}$

Fig. 3-7 Map for Example 3-4; $A^{\prime} C+A^{\prime} B+A B^{\prime} C+B C=C+A^{\prime} B$

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}
m_{12}	m_{13}	m_{15}	m_{14}
m_{8}	m_{9}	m_{11}	m_{10}

(a)

(b)

Fig. 3-8 Four-variable Map

Example: $f(w, x, y, z)=\sum(0,1,2,4,5,6,8,9,12,13,14)$

Fig. 3-9 Map for Example 3-5; $F(w, x, y, z)$ $=\Sigma(0,1,2,4,5,6,8,9,12,13,14)=y^{\prime}+w^{\prime} z^{\prime}+x z^{\prime}$

Fig.3-10 Map for Example 3-6; $A^{\prime} B^{\prime} C+B^{\prime} C D^{\prime}+A^{\prime} B C D^{\prime}$

$$
+A B^{\prime} C^{\prime}=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C D^{\prime}
$$

PRIME IMPLICANTS

- In choosing adjacent squares in a map, we must ensure that
- all the minterm of the function are covered when we combine the squares
- the number of terms in the expression is minimized
- there are no redundant terms (i.e. minterms covered by other terms)
- Prime implicant (PI): product term obtained by combining the maximum possible number of adjacent squares.
- If a minterm in a square is covered by only one PI then the PI is essential.
- To avoid redundant terms, do (I) essential prime implicants, (2) prime implicants, (3) other terms

(a) Essential prime implicants $B D$ and $B^{\prime} D^{\prime}$

(b) Prime implicants $\mathrm{CD}, \mathrm{B}^{\prime} \mathrm{C}$ $A D$, and $A B^{\prime}$

Fig. 3-11 Simplification Using Prime Implicants
Map in (b): do the I's in (a) first, then CD and AB'

$A=0$				
$B C$	$D E$		D	
	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

Fig. 3-12 Five-variable Map
Example: F(A,B,C,D,E) = A'B'E' + BD'E + ACE

FIGURE 3.13
Map for Example 3.7, $F=A^{\prime} B^{\prime} E^{\prime}+B D^{\prime} E+A C E$

Fig. 3-13 Map for Example 3-7; $F=A^{\prime} B^{\prime} E^{\prime}+B D^{\prime} E+A C E$

$\sum(0,1,2,5,8,9,10)$

- Example 3-8: Simplify to a minimal expression using the:
- I's to produce a sum of products (AND-OR)
- O's to produce a complemented sum of products (AND-NOR)
- O's to produce a product of sums (OR-AND)
- I'to produce a complemented product of sums (OR-NAND)

Fig. 3-14 Map for Example 3-8; $F(A, B, C, D)=\Sigma(0,1,2,5,8,9,10)$ $=\mathrm{B}^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)$

(a) $F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D$

(b) $F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)$

Fig. 3-15 Gate Implementation of the Function of Example 3-8

Table 3.2
Truth Table of Function F

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Fig. 3-16 Map for the Function of Table 3-2

(a) $F=y z+w^{\prime} x^{\prime}$

(a) $F=y z+w^{\prime} z$

Fig. 3-17 Example with don't-care Conditions

Fig. 3-18 Logic Operations with NAND Gates

Fig. 3-19 Two Graphic Symbols for NAND Gate

(a)

(b)

(c)

Fig. 3-20 Three Ways to Implement $F=A B+C D$

Fig. 3-21 Solution to Example 3-10

Fig. 3-22 Implementing $F=A(C D+B)+B C$

Fig. 3-23 Implementing $F=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$

Fig. 3-24 Logic Operations with NOR Gates

(a) OR-invert

(a) Invert-AND

Fig. 3-25 Two Graphic Symbols for NOR Gate

Fig. 3-26 Implementing $F=(A+B)(C+D) E$

Fig. 3-27 Implementing $F=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$ with NOR Gates

(a) Wired-AND in open-collector TTL NAND gates. (AND-OR-INVERT)

(b) Wired-OR in ECL gates
(OR-AND-INVERT)

Fig. 3-28 Wired Logic

Fig. 3-29 AND-OR-INVERT Circuits; $F=(A B+C D+E)^{\prime}$

(a) OR-NAND

(b) OR-NAND

(c) NOR-OR

Fig. 3-30 OR-AND-INVERT Circuits; $F=[(A+B)(C+D) E]^{\prime}$

(a) Map simplification in sum of products.

(b) $F=\left(x^{\prime} y+x y^{\prime}+z\right)^{\prime}$

OR-NAND

NOR-OR
(c) $F=\left[(x+y+z)\left(x^{\prime}+y^{\prime}+z\right)\right]^{\prime}$

Fig. 3-31 Other Two-level Implementations

Fig. 3-32 Exclusive-OR Implementations

(a) Odd function
$F=A \oplus B \oplus C$

(a) Even function $F=(A \oplus B \oplus C)^{\prime}$

Fig. 3-33 Map for a Three-variable Exclusive-OR Function

Fig. 3-34 Logic Diagram of Odd and Even Functions

(a) Odd function

$$
F=A \oplus B \oplus C \oplus D
$$

(b) Even function

$$
F=(A \oplus B \oplus C \oplus D)^{\prime}
$$

Fig. 3-35 Map for a Four-variable Exclusive-OR Function

Fig. 3-36 Logic Diagram of a Parity Generator and Checker

Fig. 3-37 Circuit to Demonstrate HDL

Fig. 3-38 Simulation Output of HDL Example 3-3

