GATE-LEVEL MINIMIZATION

INEL 4205 - Spring 2012 - feb 21

$\sum(0,1,2,5,8,9,10)$

- Example 3-8: Simplify to a minimal expression using the:
- I's to produce a sum of products (AND-OR)
- O's to produce a complemented sum of products (AND-NOR)
- O's to produce a product of sums (OR-AND)
- I'to produce a complemented product of sums (OR-NAND)
- implement first using NAND gates only
- implement fourth using NOR gates only

$$
f(u, b, c, d)=\sum(0,1,2,5,8, a, 10)
$$

$$
f=b^{\prime} d^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime} d
$$

$$
f(u, b, c, a)=\sum(0,1,2,5,8,9,10)
$$

$$
\begin{equation*}
\left(a b+c d+b d^{\prime}\right)^{\prime}=f \tag{b}
\end{equation*}
$$

$$
f(u, b, c, d)=\sum(0,1,2,5,8,9,10)
$$

$$
\left(d^{\prime}+c^{\prime}\right)\left(a^{\prime}+b^{\prime}\right)\left(b^{\prime}+d\right)
$$

$$
\begin{aligned}
& f(u, b, c, d)=\sum(0,1,2,5,8,9,10) \\
& a b, c d \\
& {\left[(b+d)\left(a+c+d^{\prime}\right)(b+c)\right]^{15},}
\end{aligned}
$$

Textbook solution

Fig. 3-14 Map for Example 3-8; $F(A, B, C, D)=\Sigma(0,1,2,5,8,9,10)$ $=\mathrm{B}^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)$

(a) $F=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D$

(b) $F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)$

Fig. 3-15 Gate Implementation of the Function of Example 3-8

Fig. 3-18 Logic Operations with NAND Gates

Fig. 3-19 Two Graphic Symbols for NAND Gate

(a)

(b)

(c)

Fig. 3-20 Three Ways to Implement $F=A B+C D$

Fig. 3-24 Logic Operations with NOR Gates

Fig. 3-25 Two Graphic Symbols for NOR Gate

