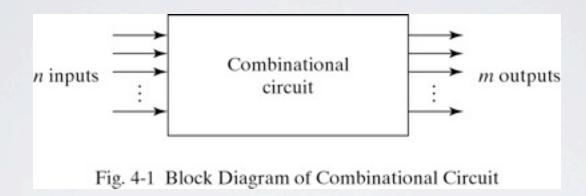
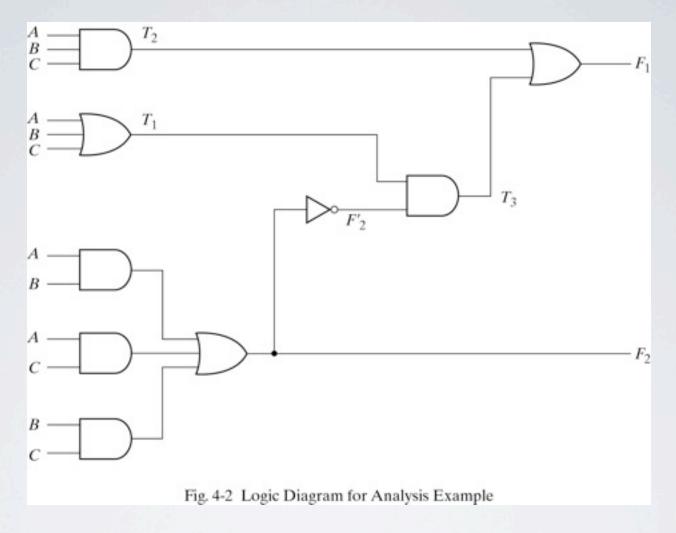
ARITHMETIC CIRCUITS

INEL 4205 - Ch. 4 - Set 1 Spring 2012



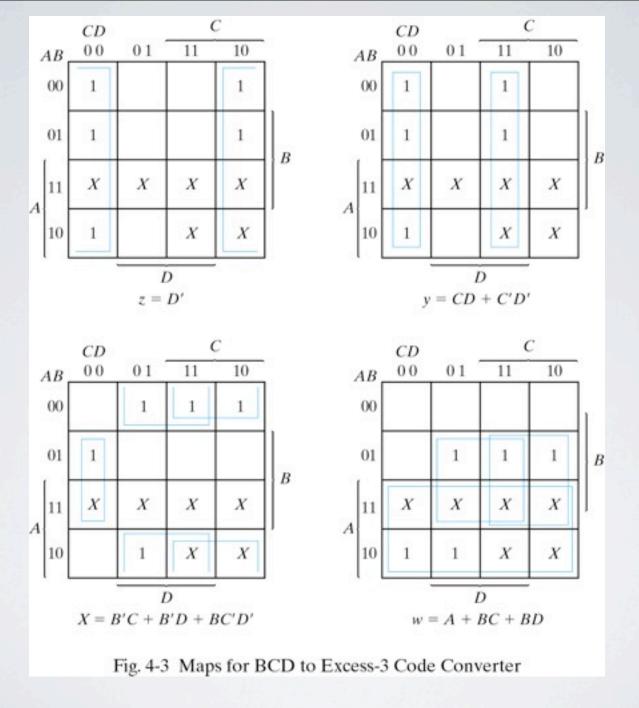


You can use intermediate variables to construct the boolean Functions from a complex logic diagram.

Table 4-2
Truth Table for Code-Conversion Example

Input BCD				Output Excess-3 Code			
Α	В	C	D	w	X	У	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	- 1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	.0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1 -	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Table 4-2 BCD to Excess-3 Code



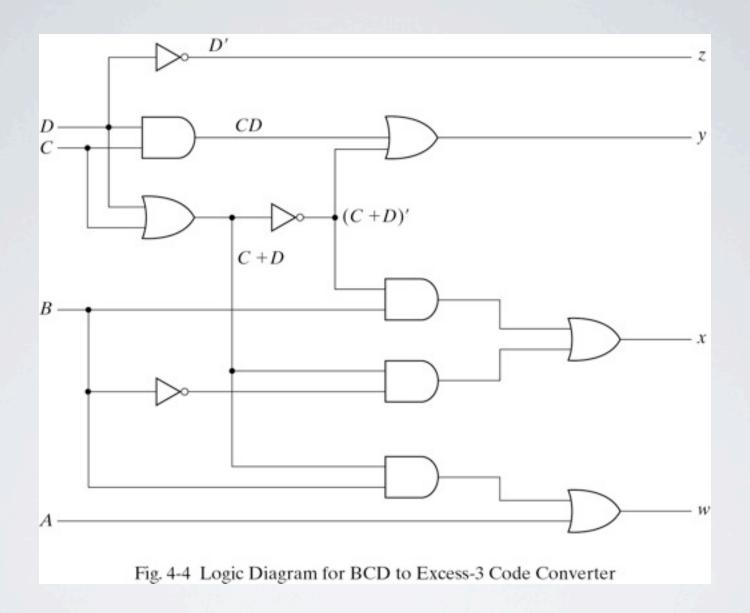
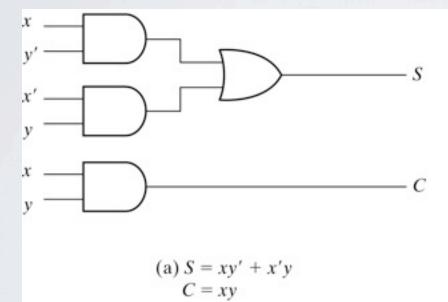


Table 4-3 Half Adder x y C S 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0



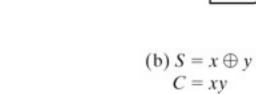
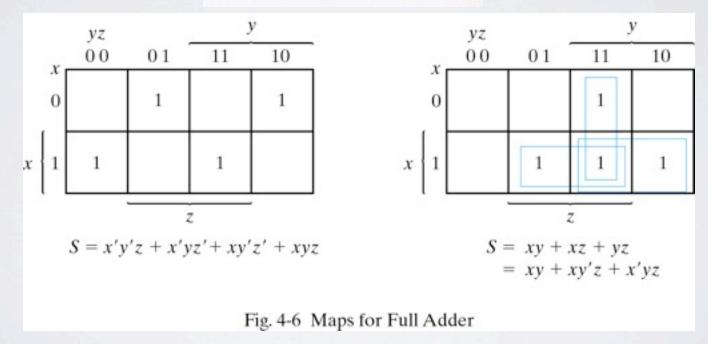
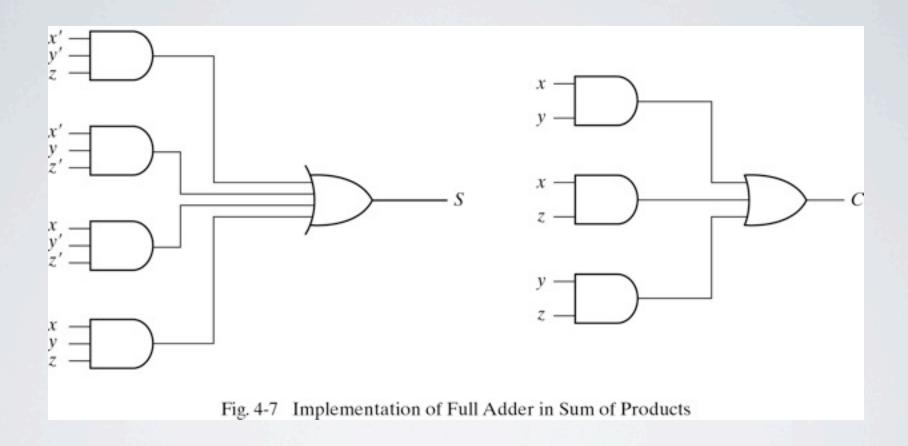


Fig. 4-5 Implementation of Half-Adder

х	У	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1.	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1





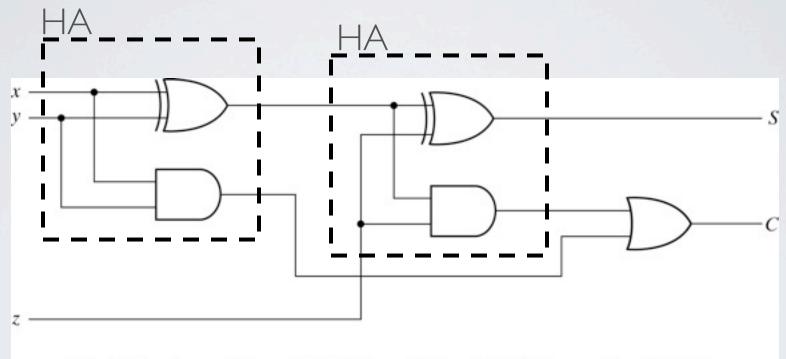
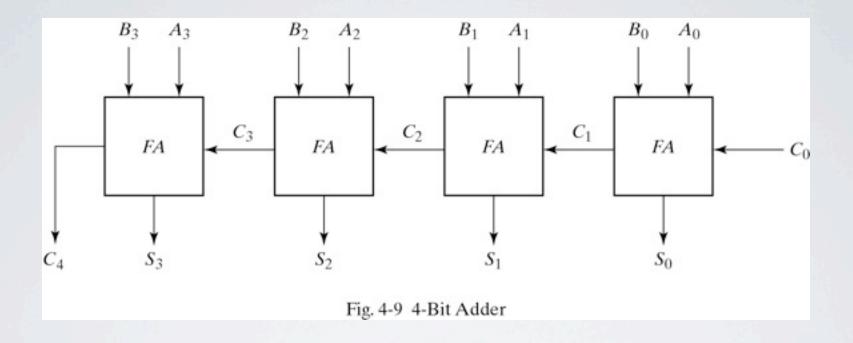
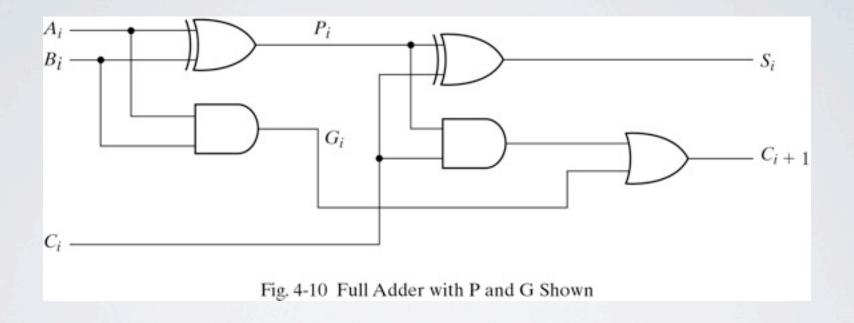
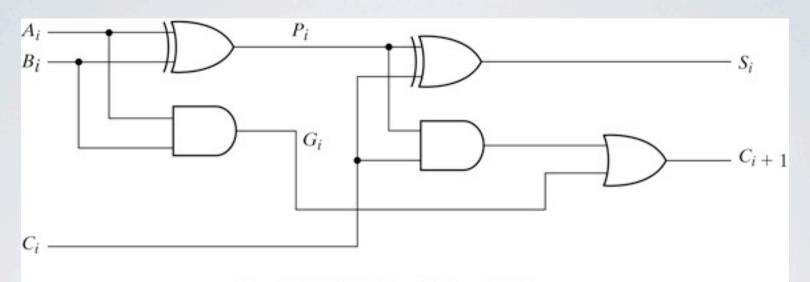


Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate







$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

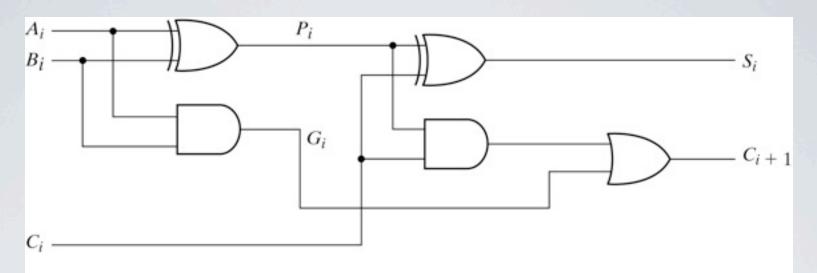


Fig. 4-10 Full Adder with P and G Shown

$$P_i = A_i \oplus B_i$$
 $S_i = P_i \oplus C_i$ $C_{i+1} = G_i + P_i C_i$ $C_0 = \text{input carry}$ $C_1 = G_0 + P_0 C_0$ $C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$ $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

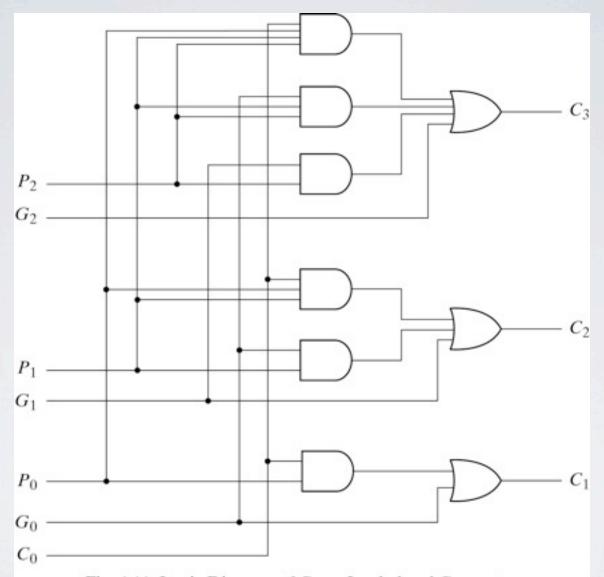
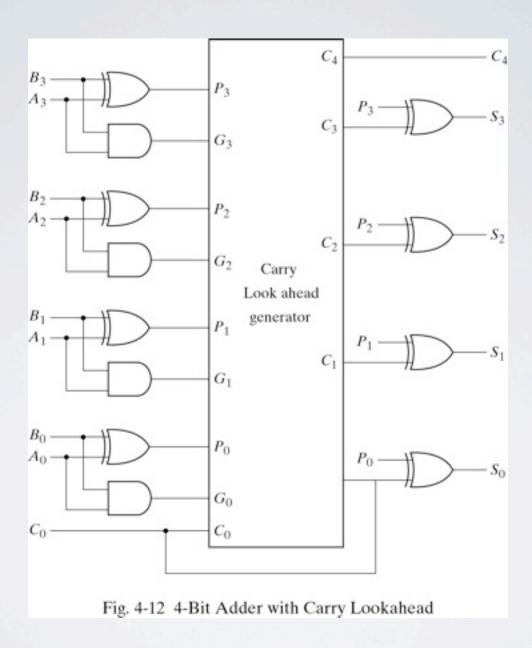
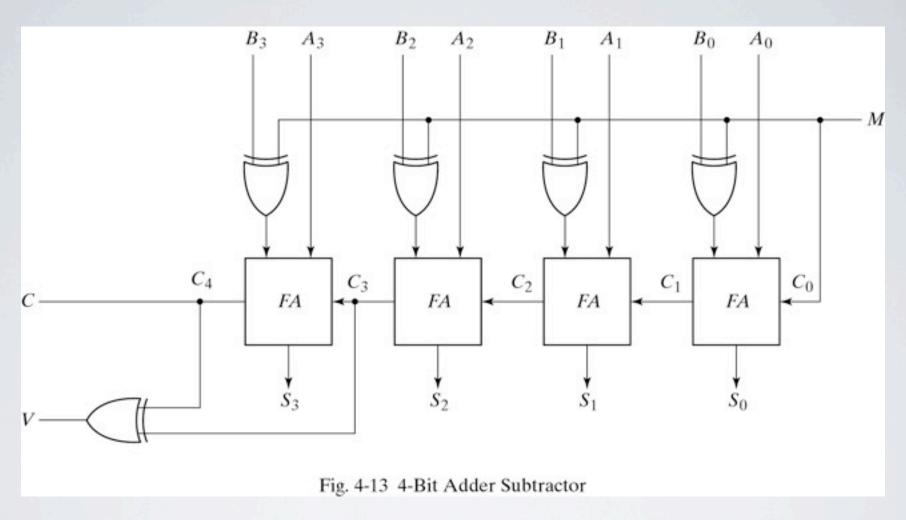


Fig. 4-11 Logic Diagram of Carry Lookahead Generator





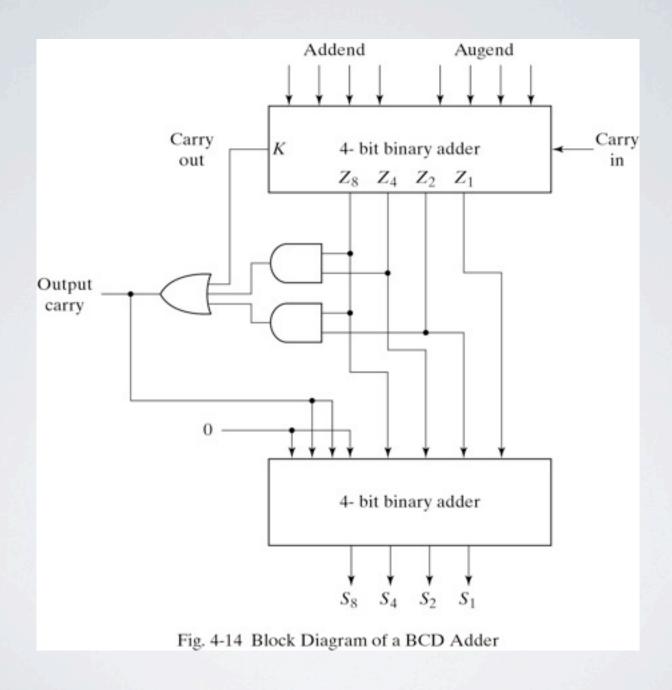
M=1 complements the B-bits and adds 1, thus forming the 2's complement of B

carries: 0	1	carries: 1	0
+70	0 1000110	-70	1 0111010
+80	0 1010000	-80	1 0110000
+150	1 0010110	-150	0 1101010

overflow occurs if:

For unsigned numbers: carry out of msb

for Signed numbers: if carry into sign bit is different than carry out of sign bit



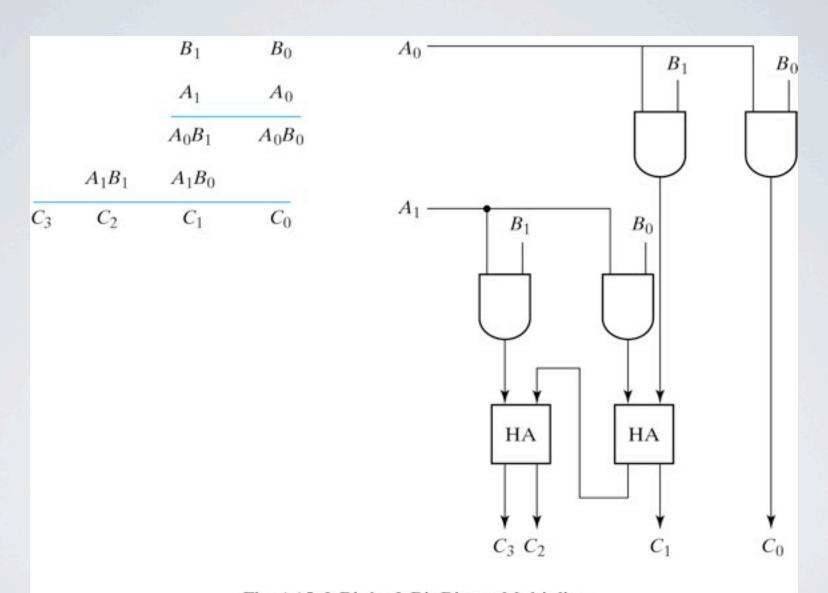
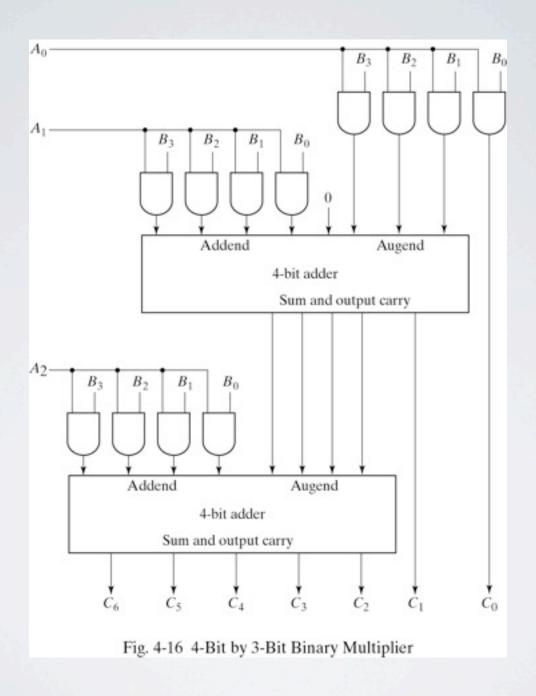


Fig. 4-15 2-Bit by 2-Bit Binary Multiplier



MAGNITUDE COMPARATOR

$$A = A_3 A_2 A_1 A_0$$
$$B = B_3 B_2 B_1 B_0$$

$$x_i = A_i B_i + A'_i B'_i$$
 for $i = 0, 1, 2, 3$
 $(A = B) = x_3 x_2 x_1 x_0$

$$(A > B) = A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0'$$

$$(A < B) = A_3' B_3 + x_3 A_2' B_2 + x_3 x_2 A_1' B_1 + x_3 x_2 x_1 A_0' B_0$$

