Multiplexers and Decoders

INEL 4205 - Ch. 4 - Spring 2012

(a) Logic diagram
(b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

s_{1}	s_{0}	Y
0	0	I_{0}
0	1	I_{1}
1	0	I_{2}
1	1	I_{3}

(b) Function table

Fig. 4-25 4-to-1-Line Multiplexer

Fig. 4-26 Quadruple 2-to-1-Line Multiplexer

x	y	z	F	
0	0	0	0	$F=z$
0	0	1	1	
0	1	0	1	$F=z^{\prime}$
0	1	1	0	
1	0	0	0	$F=0$
1	0	1	0	
1	1	0	1	$F=1$
1	1	1	1	

(a) Truth table

(b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

A	B	C	D	F	
0	0	0	0	0	$F=D$
0	0	0	1	1	$F=D$
0	0	1	0	0	$F=D$
0	0	1	1	1	
0	1	0	0	1	$F=D^{\prime}$
0	1	0	1	0	
0	1	1	0	0	$F=0$
0	1	1	1	0	
1	0	0	0	0	$F=0$
1	0	0	1	0	
1	0	1	0	0	$F=D$
1	0	1	1	1	
1	1	0	0	1	$F=1$
1	1	0	1	1	
1	1	1	0	1	$F=1$
1	1	1	1	1	

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

Table 4-6

Truth Table of a 3-to-8-Line Decoder

Inputs					Outputs						
x	y	z	D_{0}	$D_{\mathbf{1}}$	$D_{\mathbf{2}}$	$D_{\mathbf{3}}$	$\boldsymbol{D}_{\mathbf{4}}$	$D_{\mathbf{5}}$	$D_{\mathbf{6}}$	$\boldsymbol{D}_{\mathbf{7}}$	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

Fig. 4-18 3-to-8-Line Decoder

E	A	B	D_{0}	D_{1}	D_{2}	D_{3}
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

(a) Logic diagram
(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

Fig. 4-21 Implementation of a Full Adder with a Decoder

Table 4-7
Truth Table of Octal-to-Binary Encoder

Inputs									
D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	x	y
1	0	0	0	0	0	0	0	z	
0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	1
0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	1	1	1

Do	D,	D_{2}	D_{3}	\times	y	\checkmark
0	0	0	0	\times	\times	0
1	0	0	0	0	0	
X	1	0	0	0	I	
\times	\times	1	0	1	0	1
\times	\times	\times	I	I	1	

$x=D_{2}+D_{3}$

$y=D_{3}+D_{1} D_{2}^{\prime}$

Fig. 4-22 Maps for a Priority Encoder

Fig. 4-23 4-Input Priority Encoder

Fig. 4-29 Graphic Symbol for a Three-State Buffer

(a) 2-to-1- line mux

(b) 4-to-1 line mux

Fig. 4-30 Multiplexers with Three-State Gates

bufifl

notifl

bufif0

notif0

Fig. 4-31 Three-State Gates

Fig. 4-32 2-to-1-Line Multiplexer with Three-State Buffers

Fig. P4-1

Fig. P4-2

(a) Segment designation

(b) Numerical designation for display

Fig. P4-9

