CHAPTER 5
 SEQUENTIAL LOGIC
 INEL 4205 Logic Circuits Spring 2012

Fig. 5-1 Block Diagram of Sequential Circuit

(a) Block diagram

(b) Timing diagram of clock pulses

Fig. 5-2 Synchronous Clocked Sequential Circuit

Fig. 5-3 SR Latch with NOR Gates

(a) Logic diagram
(b) Function table

Fig. 5-4 $S R$ Latch with NAND Gates

(a) Logic diagram

C	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	$Q=0 ;$ Reset state
1	1	0	$Q=1 ;$ set state
1	1	1	Indeterminate

(b) Function table

Fig. 5-5 SR Latch with Control Input

C	D	Next state of Q
0	X	No change
1	0	$Q=0 ;$ Reset state
1	1	$Q=1 ;$ Set state

(a) Logic diagram
(b) Function table

Fig. 5-6 D Latch

SR

$\bar{S} \bar{R}$

D

Fig. 5-7 Graphic Symbols for Latches

(a) Response to positive level

(b) Positive-edge response

(c) Negative-edge response

Fig. 5-8 Clock Response in Latch and Flip-Flop

Fig. 5-9 Master-Slave D Flip-Flop

(a) Positive-edge

(a) Negative-edge

Fig. 5-11 Graphic Symbol for Edge-Triggered D Flip-Flop

(a) Circuit diagram
(b) Graphic symbol

Fig. 5-12 JK Flip-Flop
Table 5-1
Flip-Flop Characteristic Tables

J Flip-Flop			
J	K	$Q(t+1)$	
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$Q^{\prime}(t)$	Complement

Fig. 5-13 T Flip-Flop

Fig. 5-15 Example of Sequential Circuit

$$
\begin{aligned}
& A(t+1)=A x+B x \\
& B(t+1)=A^{\prime} x
\end{aligned}
$$

State equations or transition equations

$y=(A+B) x^{\prime}$

Table 5-2
State Table for the Circuit of Fig. 5-15

Present State		Input	Next State		Output
A	B	x	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Table 5-3
Second Form of the State Table

Present State	Next State		Output	
	$x=0$	$x=1$	$x=0$	$x=1$
$A B$	$A B$	$A B$	y	y
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

/0 represents the output during the present state with the given input

Fig. 5-16 State Diagram of the Circuit of Fig. 5-15

Mealy Finite State Machine (FSM) - output is a function of present state and input

Example:

I. Find the state table
2. Draw the state diagram

(a) Circuit diagram

Present state			Nexp	
Inputs				
state				

(b) State table

(c) State diagram

Fig. 5-17 Sequential Circuit with D Flip-Flop

5-6 A sequential circuit with two D flip-flops, A and B; two inputs, x and y; and one output, z, is specified by the following next-state and output equations:

$$
\begin{aligned}
A(t+1) & =x^{\prime} y+x A \\
B(t+1) & =x^{\prime} B+x A \\
z & =B
\end{aligned}
$$

(a) Draw the logic diagram of the circuit.
(b) List the state table for the sequential circuit.
(c) Draw the corresponding state diagram.

Fig. 5-18 Sequential Circuit with $J K$ Flip-Flop
flip-flop input equations

$$
\begin{array}{ll}
J_{A}=B & K_{A}=B x^{\prime} \\
J_{B}=x^{\prime} & K_{B}=A^{\prime} x+A x^{\prime}=A \oplus x
\end{array}
$$

Table 5-4
State Table for Sequential Circuit with JK Flip-Flops

Present State		Input x	Next State		Flip-Flop Inputs			
A	B		A	B	J_{A}	K_{A}	J_{B}	K_{B}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Fig. 5-19 State Diagram of the Circuit of Fig. 5-18

Fig. 5-20 Sequential Circuit with T Flip-Flops

5-10 A sequential circuit has two $J K$ flip-flops A and B, two inputs x and y, and one output z. The flipflop input equations and circuit output equation are

$$
\begin{aligned}
J_{A} & =B x+B^{\prime} y^{\prime} & & K_{A}=B^{\prime} x y^{\prime} \\
J_{B} & =A^{\prime} x & & K_{B}=A+x y^{\prime} \\
z & =A x^{\prime} y^{\prime}+B x^{\prime} y^{\prime} & &
\end{aligned}
$$

(a) Draw the logic diagram of the circuit.
(b) Tabulate the state table.
(c) Derive the state equations for A and B.

Design Procedure

1. From the word description and specifications of the desired operation, derive a state diagram for the circuit.
2. Reduce the number of states if necessary.
3. Assign binary values to the states.
4. Obtain the binary-coded state table.
5. Choose the type of flip-flops to be used.
6. Derive the simplified flip-flop input equations and output equations.
7. Draw the logic diagram.

State reduction

Fig. 5-22 State Diagram

Table 5-6
State Table

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
a	a	b		0	0
b	c	d		0	0
c	a	d		0	0
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

States are application-dependant. The names given here (a, b, c, d, \ldots) are arbitrary.
It is assumed that only the output response to a given sequence of inputs is important.

Table 5-6 State Table					
	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	
	$\boldsymbol{x}=\mathbf{1}$				
a	a	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

An algorithm for the state reduction of a completely specified state table is given here without proof: "Two states are said to be equivalent if, for each member of the set of inputs, they give exactly the same output and send the circuit either to the same state or to an equivalent state." When two states are equivalent, one of them can be removed without altering the input-output relationships.

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	
	$\boldsymbol{x}=\mathbf{1}$				
a	a	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

Table 5-7
Reducing the State Table

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	
	$\boldsymbol{x}=\mathbf{1}$				
a	a	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	e	f	0	1	

Table 5-8
Reduced State Table

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
a	a	b		0	0
b	c	d		0	0
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Fig. 5-23 Reduced State Diagram

State Assignment

Table 5-9

Three Possible Binary State Assignments

State	Assignment $\mathbf{1}$ Binary	Assignment $\mathbf{2}$ Gray code	Assignment $\mathbf{3}$ One-hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

Table 5-10
Reduced State Table with Binary Assignment 1

	Next State		Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
000	000	001	0	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1

Sequence detector: circuit that detects 3 consecutive I's in a string of bits coming through the input line

Fig. 5-24 State Diagram for Sequence Detector

$D_{A}=A x+B x$

$D_{B}=A x+B^{\prime} x$

$y=A B$

Fig. 5-25 Maps for Sequence Detector

Fig. 5-26 Logic Diagram of Sequence Detector

Using JK or T flip-flops

Table 5-12
Flip-Flop Excitation Tables

$Q(t)$	$Q(t+1)$	J	K	$Q(t)$	$Q(t+1)$	T
0	0	0	X	0	0	0
0	1	1	X	0	1	1
1	0	X	1	1	0	1
1	1	X	0	1	1	0

Table 5-13
State Table and JK Flip-Flop Inputs

Present State		Input x	Next State		Flip-Flop Inputs			
A	B		A	B	J_{A}	K_{A}	J_{B}	K_{B}
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

$$
J_{A}=B x^{\prime}
$$

$J_{B}=x$

$$
K_{A}=B x
$$

$K_{B}=(A \oplus x)^{\prime}$

Fig. 5-27 Maps for J and K Input Equations

Fig. 5-28 Logic Diagram for Sequential Circuit with $J K$ Flip-Flops

STATE ASSIGNMENT GUIDELINES

- assign neighboring codes if states have the same
- next state (Gl)
- previous state (G2)
- outputs (G3)
- prioritize state combinations for which GI, G2, G3 apply more than once

Sequence detector for 010 or 1001

$s_{3} \& s_{5}$ are equivalent

present	next $x=0$		$x=0$	
s_{0}	s_{1}	s_{4}	0	0
s_{1}	s_{1}	s_{2}	0	0
s_{2}	s_{3}	s_{4}	1	0
s_{3}	s_{6}	s_{2}	0	0
s_{4}	s_{5}	s_{4}	0	0
s_{5}	s_{6}	s_{2}	0	0
s_{6}	s_{1}	s_{2}	0	1

Sequence detector for 010 or 1001 (cont)

present	$\begin{aligned} & \text { next } \\ & x=0 \end{aligned}$		output$x=0$	
So		S4	0	0
SI	SI	S2	0	0
S2	S3	S4	\|	0
S3	S6	S2	0	0
S4	S3	S4	0	0
S6	SI	S2	0	\|

- (s0,s l,s6), (s2, s4), $(s 0, s 2, s 4),(s l, s 3, s 6) \quad g \mid$
- (sl,s2), (s3,s4) g2 $\times 2$
-(s0, sl, s3, s4) g3

	$O \bigcirc$	$O 1$	$\\| 1$	$I O$
0	$s 0$	$s 1$	$s 6$	X
1	$s 4$	$s 2$	X	$s 3$

one possibility

Sequence detector for 010 or 1001 (cont)

present		Next		output	
		$x=0$	$x=1$	$x=0$	$x=1$
s0	$\begin{array}{\|c} \hline \mathrm{OO} \\ \mathrm{O} \end{array}$	OOI	100	0	0
sl	OOI	OOI	101	0	0
s2	IOI	110	100	I	0
s3	110	OII	101	0	0
s4	100	110	100	0	0
s6	OII	OOI	101	0	1

5-19 A sequential circuit has three flip-flops A, B, C; one input x; and one output y. The state diagram is shown in Fig. P5-19. The circuit is to be designed by treating the unused states as don'tcare conditions. Analyze the circuit obtained from the design to determine the effect of the unused states.
(a) Use D flip-flops in the design.
(b) Use $J K$ flip-flops in the design.

FIGURE P5-19

5-19 (a)

$D A=A^{\prime} B^{\prime} x$

$D C=C x^{\prime}+A x+A^{\prime} B^{\prime} x^{\prime}$

$D B=A+C^{\prime} x^{\prime}+B C x$

$y=A^{\prime} x$

Sunday, April 8, 12

self-correcting
(b) Use JK flipflops:
same state lable 2 s in part (a).
Fhp-flop inputs

$J A$	$K A$	$J B$	$K B$	$J C$	$R C$
0	x	1	x	1	x
1	x	0	x	0	x
0	x	0	x	x	0
1	x	0	x	x	1
0	x	x	0	0	x
0	x	x	1	0	x
0	x	x	1	x	0
0	x	x	0	x	1
x	1	1	x	0	x
x	1	1	x	1	x

$$
\begin{array}{ll}
J A=B^{\prime} x & K A=1 \\
J B=A+C^{\prime} x^{\prime} & K B=C^{\prime} x+C x^{\prime} \\
J C=A x+A^{\prime} B^{\prime} x^{\prime} & K C=x \\
y=A^{\prime} x &
\end{array}
$$

self-corecting because

$$
K A=1
$$

Fig. 5-29 State Diagram of 3-Bit Binary Counter

$T_{A 2}=A_{1} A_{0}$

$T_{A 1}=A_{0}$

$T_{A 0}=1$

Fig. 5-30 Maps for 3-Bit Binary Counter

Fig. 5-31 Logic Diagram of 3-Bit Binary Counter

EXERCISE

- draw the state diagram for a circuit that detects the sequence "OIOI" (left-to-right) using
- a moore finite state machine (FSM)
- a mealy fsm

EXERCISE

- for a clocked synchronous state machine with two inputs, X and Y, and one output, Z, The output should be I if the number of I inputs on X and Y since reset is a multiple of 4, and 0 otherwise. draw the state diagram for a
- moorE machine
- Mealy machine

EXERCISE

- design a circuit to detect the sequence $d_{0} d_{1} d_{2} d_{3} D_{4}=0| | 0 \mid$, where D_{0} is the first bit to arrive at input " x ". The output " y " should be a logic-I for a full clock cycle following detection of the sequence.
- Draw a state diagram
- assign binary states
- Write a state table
- find the combinational circuit's logic expressions if d, JK and

Fig. P5-7

Fig. P5-8

Fig. P5-19

