PROGRAMMABLE LOGIC AND MEMORIES

INEL 4205 - Logic Circuits - Spring 2012

(a) Conventional symbol

(b) Array logic symbol

Fig. 7-1 Conventional and Array Logic Diagrams for OR Gate

- Two types of memory
- ROM: read-only memory: EPROM or FLASH / EEPROM
- RAM: read/write memory: SRAM (static) or DRAM (dynamic).
- Memory device address inputs
- select a location on (inside) the memory.
- number from A_{0} to $\mathrm{A}_{\mathrm{N}=1}\left(2^{\mathrm{N}}=\#\right.$ cells $)$

Fig. 7-2 Block Diagram of a Memory Unit

- Data pins
- 8-bit in width: D0 to D7
- eight devices form a 64-bit wide memory
- D0: least significant bit
- Control inputs
- Output enable (\#OE): cause a read
- Write enable (\#WE): causes a write
- Chip select (\#CS)

TMS40I 6 2K $\times 8$ SRAM Pinout

PIN FUNCTION

```
A0}=\mp@subsup{A}{14}{
IO
\overline{CS}
OE
WE
VCC
GND
```

Addresses

Data connections

Chip select
Output enable
Write enable
+5V Supply
Ground

- Location $10000 \mathrm{H}-$ I7FFFH appear as follows in binary.
- Bits AO-AI4 => internally decoded

$10000 \mathrm{H}=00010000000000000000$
 |7FFFH $=000|0| 1|1| 1 \mid$ |||| ||||

Al9-A I 5 externally decoded to uniquely select the chip

168-pin Dual In-Line Memory Module (DIMM)

Memory address		
Binary	decimal	Memory contest
0000000000	0	1011010101011101
0000000001	1	1010101110001001
0000000010	2	0000110101000110
	:	:
	-	-
1111111101	1021	1001110100010100
11111111110	1022	0000110100011110
11111111111	1023	1101111000100101

Fig. 7-3 Content of a 1024×16 Memory

STEPS TO WRITE INTO RAM

- Apply address to address lines
- Apply data to data input lines
- Activate write input \& enable chip

For reads: do I and 3 using read input

Fig. 7-4 Memory Cycle Timing Waveforms

(b) Block diagram

Fig. 7-5 Memory Cell

Fig. 7-6 Diagram of a 4×4 RAM

ROW/COLUMN DECODING

- IK-word memory requires 10 address bits and a 10×1024 decoder
- The decoding can also be done with two 5×32 decoder, one for the row and one for the column. The cell connected to the row-column intersection is selected.

Fig. 7-7 Two-Dimensional Decoding Structure for a 1K-Word Memory

Fig. 7-8 Address Multiplexing for a 64 K DRAM

Fig. 7-9 ROM Block Diagram

Fig. 7-10 Internal Logic of a 32×8 ROM
Used as programable logic, a PROM stores the truth table for N functions of M inputs. N = number of bits in each cell.
$M=$ number of address bits; there are 2^{M} memory locations in the PROM.
" x " indicates a connection, and a " \mid " in the truth table

Fig. 7-11 Programming the ROM According to Table 7-3
Address 00000: cell contents is $10110 \mid 10$

Design a combinatorial circuit using a ROM.The circuit accepts a 3-bit input number and outputs a binary number equal to the square of the input.

Table 7-4
Truth Table for Circuit of Example 7-1

Inputs

$\boldsymbol{A}_{\mathbf{2}}$	$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{0}}$
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Outputs

$\boldsymbol{B}_{\mathbf{5}}$	$\boldsymbol{B}_{\mathbf{4}}$	$\boldsymbol{B}_{\mathbf{3}}$	$\boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{1}}$	$\boldsymbol{B}_{\mathbf{0}}$	Decimal
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	1	0	0	4
0	0	1	0	0	1	9
0	1	0	0	0	0	16
0	1	1	0	0	1	25
1	0	0	1	0	0	36
1	1	0	0	0	1	49

(a) Block diagram

A_{2}	A_{1}	A_{0}	B_{5}	B_{4}	B_{3}	B_{2}
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	1	0	0

(b) ROM truth table

Fig. 7-12 ROM Implementation of Example 7-1

(a) Programmable read-only memory (PROM)

(b) Programmable array logic (PAL)

(c) Programmable logic array (PLA)

Fig. 7-13 Basic Configuration of Three PLDs

Fig. 7-14 PLA with 3 Inputs, 4 Product Terms, and 2 Outputs

PLA has limited \# of ANDs: designer can implement F' (instead of F) to minimize the $\#$ of distinct product terms, then complement F^{\prime} with the $X O R$ to produce F

Example: Implement the following boolean functions in a PLA:

$$
\begin{aligned}
& F_{1}(A, B, C)=\sum(0,1,2,4) \\
& F_{2}(A, B, C)=\sum(0,5,6,7)
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}=A^{\prime} B^{\prime}+A^{\prime} C^{\prime}+B^{\prime} C^{\prime} \\
& F_{1}=(A B+A C+B C)^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}=A B+A C+A^{\prime} B^{\prime} C^{\prime} \\
& F_{2}=\left(A^{\prime} C+A^{\prime} B+A B^{\prime} C^{\prime}\right)^{\prime}
\end{aligned}
$$

PLA programming table

				Outputs		
Product	Inputs		(C)	(T)		
term	A	B	C	F_{1}	F_{2}	
1	1	1	-	1	1	
2	1	-	1	1	1	
3	-	1	1	1	-	
4	0	0	0		-	1

Fig. 7-15 Solution to Example 7-2

7-21 Derive the PLA programming table for the combinational circuit that squares a 3-bit number. Minimize the number of product terms. (See Fig. 7-12 for the equivalent ROM implementation.)

(a) Block diagram

A_{2}	A_{1}	A_{0}	B_{5}	B_{4}	B_{3}	B_{2}
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	1	0	0

(b) ROM truth table

Fig. 7-12 ROM Implementation of Example 7-1

3. (25 pts) Determine the PLA programming table needed to implement the following two boolean functions. Minimize the number of product terms. Show all your work, including the Karnaugh maps used in the minimization.

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(1,3,4,5,7,13,15) \\
& \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,2,3,6,7,8,10,11,12,14)
\end{aligned}
$$

Write your result in the following table.

Note: not all rows need to be used

Fig. 7-16 PAL with Four Inputs, Four Outputs, and Three-Wide AND-OR Structure
PAL: Only inputs to AND gates can be programmed but one term (F_{l}) can be re-used in other functions

$$
\begin{aligned}
w(A, B, C, D) & =\sum(2,12,13) \\
x(A, B, C, D) & =\sum(7,8,9,10,11,12,13,14,15) \\
y(A, B, C, D) & =\sum(0,2,3,4,5,6,7,8,10,11,15) \\
z(A, B, C, D) & =\sum(1,2,8,12,13)
\end{aligned}
$$

Manipulate expressions so that a common term is identified. Assign common term to F_{1}.

$$
\begin{aligned}
w & =A B C^{\prime}+A^{\prime} B^{\prime} C D^{\prime} \\
x & =A+B C D \\
y & =A^{\prime} B+C D+B^{\prime} D^{\prime} \\
z & =A B C^{\prime}+A^{\prime} B^{\prime} C D^{\prime}+A C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D \\
& =w+A C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D
\end{aligned}
$$

Table 7-6
PAL Programming Table

	AND Inputs					
Product Term	A	B	C	D	W	Outputs
1	1	1	0	-	-	$w=A B C^{\prime}$
2	0	0	1	0	-	$+A^{\prime} B^{\prime} C D^{\prime}$
3	-	-	-	-	-	
4	1	-	-	-	-	$x=A$
5	-	1	1	1	-	$+B C D$
6	-	-	-	-	-	
7	0	1	-	-	-	$y=A^{\prime} B$
8	-	-	1	1	-	$+C D$
9	-	0	-	0	-	$+B^{\prime} D^{\prime}$
10	-	-	-	-	1	$z=w$
11	1	-	0	0	-	$+A C^{\prime} D^{\prime}$
12	0	0	0	1	-	$+A^{\prime} B^{\prime} C^{\prime} D$

AND gates inputs

Fig. 7-17 Fuse Map for PAL as Specified in Table 7-6

- PAL practice: problem 7-24

Fig. 7-18 Sequential Programmable Logic Device

Fig. 7-19 Basic Macrocell Logic

Fig. 7-20 General CPLD Configuration

Xilinx FPGAs are based on Configurable Logic Blocks (CLBs) More generally called logic cells Programmable

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

HAMMING CODE: ERROR DETECTION AND CORRECTION

Bit position:	1	2	3	4	5	6	7	8	9	10	11	12
	P_{1}	P_{2}	1	P_{4}	1	0	0	P_{8}	0	1	0	0

$$
\begin{aligned}
& P_{1}=\mathrm{XOR} \text { of bits }(3,5,7,9,11)=1 \oplus 1 \oplus 0 \oplus 0 \oplus 0=0 \\
& P_{2}=\mathrm{XOR} \text { of bits }(3,6,7,10,11)=1 \oplus 0 \oplus 0 \oplus 1 \oplus 0=0 \\
& P_{4}=\mathrm{XOR} \text { of bits }(5,6,7,12)=1 \oplus 0 \oplus 0 \oplus 0=1 \\
& P_{8}=\mathrm{XOR} \text { of bits }(9,10,11,12)=0 \oplus 1 \oplus 0 \oplus 0=1
\end{aligned}
$$

	0	0	1	1	1	0	0	1	0	1	0	0
Bit position:	1	2	3	4	5	6	7	8	9	10	11	12

- Compute correction bits $C_{1}=$ XOR of bits $(1,3,5,7,9,11)$

$$
\begin{aligned}
& C_{2}=\text { XOR of bits }(2,3,6,7,10,11) \\
& C_{4}=\text { XOR of bits }(4,5,6,7,12) \\
& C_{8}=\text { XOR of bits }(8,9,10,11,12)
\end{aligned}
$$

For no error:
With error in bit 1 :
With error in bit 5:

C_{8}	C_{4}	C_{2}	C_{1}

0
0
0
0
1
0
0
0
$0 \quad 0 \quad 1$
$0 \quad 1$

Table 7-2
Range of Data Bits for k Check Bits

Number of Check Bits, \boldsymbol{k}	Range of Data Bits, \boldsymbol{n}
3	$2-4$
4	$5-11$
5	$12-26$
6	$27-57$
7	$58-120$

$$
2^{k}-1-k \geq n
$$

SINGLE-ERROR CORRECTION,

- To detect a double-error, add an aditional parity bit $P=$ XOR (all other bits)
- 12 -bit example: $P_{13}=X O R(|. .| 2$.
- If
- $C=0$ \& $P=0$: no error
- $C \neq 0$ \& $P=1$: single error at bit indicated by C
- $C \neq 0$ \& $P=0$: double error detected
- $C=0$ \& $P=1$: error in P_{13}

7-10 Given the 8 -bit data word 01011011 , generate the 13 -bit composite word for the Hamming code that corrects single errors and detects double errors.

7-11 Obtain the 15 -bit Hamming code word for the 11-bit data word 11001001010 .
7-12 A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8 -bit data word that was written into memory if the 12 -bit word read out is as follows:
(a) 000011101010
(b) 101110000110
(c) 101111110100

Fig. P7-17

