PRUEBA 6

PROBLEMAS DE PRACTICA ADICIONALES INEL 4205 - Abril 2012

1. (20 puntos) Diseñe un contador binario de 3 bits usando flip-flops tipo T, multiplexers y un numero minimo de compuertas AND, OR y NOT. El circuito debe efectuar las siguientes operaciones:

$s_{2} s_{1}$	Operación
00	contar de forma ascendente
01	contar de forma descendente
10	desplazar la cuenta hacia la derecha
11	complementar la cuenta

La cuenta debe mostrarse en $Q_{A} Q_{B} Q_{C}$. Note que el bit de selección s_{0} esta disponible para ser usado como parte del diseño. Utilice el siguiente diagrama esquemático para mostrar el circuito final.

Respuesta: Para usar un numero mínimo de compuertas podemos conectar Q_{A} a s_{0}, y usar circuitos con compuertas en las entradas multiplexers, como sigue: 0,1 para la cuenta ascendente, y en las entradas 2 y 3 para la cuenta descendente. La tabla de estados correspondiente a la cuenta ascendente es:

$Q_{A} Q_{B} Q_{C}$ actual	$Q_{A} Q_{B} Q_{C}$ próximo	$T_{A} T_{B} T_{C}$
000	001	001
001	010	011
010	011	001
011	100	111
100	101	001
101	110	011
110	111	001
111	000	111

de donde podemos deducir que, tanto cuando $Q_{A}=0$ como cuando $Q_{A}=1$,

$$
T_{A}=Q_{B} Q_{C} \quad T_{B}=Q_{C} \quad T_{C}=1
$$

Para la cuenta descendente,

$Q_{A} Q_{B} Q_{C}$ actual	$Q_{A} Q_{B} Q_{C}$ próximo	$T_{A} T_{B} T_{C}$
000	111	111
001	000	001
010	001	011
011	010	001
100	011	111
101	100	001
110	101	011
111	110	001

Puede observarse que nuevamente tanto cuando $Q_{A}=0$ como cuando $Q_{A}=1$,

$$
T_{A}=Q_{B}^{\prime} Q_{C}^{\prime} \quad T_{B}=Q_{C}^{\prime} \quad T_{C}=1
$$

Estas señales deben conectarse a las entradas 2 y 3 del multiplexer correspondiente.

$\mathrm{x}=0$			$\mathrm{x}=1$		
Presente	Próximo		$\mathrm{T}_{\mathrm{A}} \mathrm{T}_{\mathrm{B}} \mathrm{T}_{\mathrm{C}}$	Presente $^{\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}}$	Próximo $\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}$
000	Q_{C}	$\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}_{\mathrm{C}}$	000	000	100
$\mathrm{~T}_{\mathrm{A}} \mathrm{T}_{\mathrm{B}} \mathrm{T}_{\mathrm{C}}$					
001	000	000	001	001	100
010	001	011	010	101	101
011	001	010	011	101	111
100	010	110	100	110	110
101	010	111	101	110	010
110	011	101	110	111	011
111	011	100	111	111	001

Use mapa-K para obtener las siguientes expresiones:

$$
T_{A}=x Q_{A}{ }^{\prime}+x^{\prime} Q_{A} \quad T_{B}=Q_{A} Q_{B}{ }^{\prime}+Q_{A}{ }^{\prime} Q_{B} \quad T_{C}=Q_{B} Q_{C}{ }^{\prime}+Q_{B}{ }^{\prime} Q_{C}
$$

Cuando $Q_{A}=0: T_{A}=x, T_{B}=Q_{B}$. Cuando $Q_{A}=1: T_{A}=x^{\prime}, T_{B}=Q_{B}{ }^{\prime} . T_{C}=Q_{B} Q_{C}{ }^{\prime}+Q_{B}{ }^{\prime} Q_{C}$ no importa el valor de Q_{A}.

Para complementar la cuenta podemos usar $T_{A, B, C}=I$

2. (10 puntos) El siguiente esquemático representa un contador de 8 bits, compuesto de dos módulos con contadores de 4 bits. El modulo $C 1$ contiene los 4 bits menos significativos.
Cada modulo tiene entradas Load y Clear. Cuando se aplica un 1-lógico a la entrada Load, las señales presentes en las entradas $I_{3} I_{2} I_{1} I_{0}$ son almacenadas en la cuenta actual del modulo. Si se aplica un 1-lógico a la entrada Clear, la cuenta del modulo se vuelve 0000. La entrada Count abilita el funcionamiento del modulo: cuando Count $=1$ el modulo incrementa su cuenta cuando el borde ascendente de $C L K$ es recibido, mientras que cuando Count $=0$ la cuenta no cambia. La cuenta de cada modulo aparece en las salidas $A_{3} A_{2} A_{1} A_{0}$.
Determine el rango de cuentas que el contador de 8 bits mostrará una vez entre en su ciclo normal de operación. Explique por que piensa que ese es el rango. Su respuesta deba especificar las cuentas mínima y máxima.

2. (10 puntos) El siguiente esquemático representa un contador de 8 bits, compuesto de dos módulos con contadores de 4 bits. El modulo $C 1$ contiene los 4 bits menos significativos.
Cada modulo tiene entradas Load y Clear. Cuando se aplica un 1-lógico a la entrada Load, las señales presentes en las entradas $I_{3} I_{2} I_{1} I_{0}$ son almacenadas en la cuenta actual del modulo. Si se aplica un 1-lógico a la entrada Clear, la cuenta del modulo se vuelve 0000. La entrada Count abilita el funcionamiento del modulo: cuando Count $=1$ el modulo incrementa su cuenta cuando el borde ascendente de $C L K$ es recibido, mientras que cuando Count $=0$ la cuenta no cambia. La cuenta de cada modulo aparece en las salidas $A_{3} A_{2} A_{1} A_{0}$.
Determine el rango de cuentas que el contador de 8 bits mostrará una vez entre en su ciclo normal de operación. Explique por que piensa que ese es el rango. Su respuesta deba especificar las cuentas mínima y máxima.

Respuesta: $C 2$ incrementa su cuenta cada vez que el bit A_{3} de $C 1$ cambia de 1 a 0 . La señal $L O A D$ de $C 1$ se vuelve activa (1) cuando ambos $C 2$ y $C 1$ alcanzan la cuenta 1000 . Cuando esto ocurre $C 1$ carga la cuenta 0011 en la próxima transición de la señal clock de 0 a 1 , causando una transición de 1 a 0 en el bit A_{3} de $C 1$. El $L O A D$ de $C 2$ es registrado en ese momento, pues su entrada $C L K$ va de 0 a 1, causando que la cuenta 0000 sea almacenada en $C 2$. Asi que una vez el circuito entra en su ciclo normal de operación, opera entre 00000011 (03 en hexadecimal) y 10001000 (88 en hexadecimal). Los 4 bits de $C 1$ son los menos significativos.
4. (15 puntos) Analice el siguiente circuito para completar el diagrama de timing incluido abajo, que muestra como varían Q_{3}, Q_{2} y Q_{1} a través del tiempo. Note que se asume que las tres señales son inicialmente 0 . Explique la función del circuito.

4. (15 puntos) Analice el siguiente circuito para completar el diagrama de timing incluido abajo, que muestra como varían Q_{3}, Q_{2} y Q_{1} a través del tiempo. Note que se asume que las tres señales son inicialmente 0 . Explique la función del circuito.

Cuenta de 5 a 0 repetidamente.

1. (10 puntos) El siguiente esquemático representa un contador de 4 bits con Load en paralelo y entrada Clear. Cuando se aplica un 1-lógico a la entrada Load, las señales presentes en las entradas $I_{3} I_{2} I_{1} I_{0}$ son almacenadas en la cuenta actual del contador. Si se aplica un 1-lógico a la entrada Clear, la cuenta se vuelve 0000. La entrada Count habilita el funcionamiento del contador: cuando Count $=1$ el aparato cuenta, mientras que cuando Count $=0$ la cuenta no cambia. La cuenta del aparato aparece en las salidas $A_{3} A_{2} A_{1} A_{0}$.
Muestre como construir un contador que cuente de 0 (0000 en binario) a 13 (1101 en binario) utilizando el modulo y una compuerta AND del tamaño mas pequeño posible.

2. (10 puntos) El siguiente esquemático representa un contador de 4 bits con Load en paralelo y entrad Clear. Cuando se aplica un 1-lógico a la entrada Load, las señales presentes en las entradas $I_{3} I_{2} I_{1} I_{0}$ son almacenadas en la cuenta actual del contador. Si se aplica un 1-lógico a la entrada Clear, la cuenta se vuelve 0000. La entrad Count habilita el funcionamiento del contador: cuando Count $=1$ el aparato cuenta, mientras que Count $=0$ la cuenta no cambia.
La cuenta del aparato aparece en las salidas $A_{3} A_{2} A_{1} A_{0}$.
Muestre como construir un contador que cuente de 0 (0000 en binario) a 13 (1101 en binario) utilizando el modulo y una compuerta AND del tamaño mas pequeño posible.
Respuesta:

También puede detectarse la cuenta 14 y usar el Clear en lugar del Load.
2. (10 puntos) Muestre como construir un circuito que, una vez entre en su ciclo normal de operación, divida la frecuencia del reloj por cinco usando el siguiente modulo solamente. En otras palabras, se desea obtener una señal cuya frecuencia $f_{\text {out }}=f_{\text {clock }} \div 5$ donde $f_{\text {clock }}$ representa la frecuencia de la señal del reloj, aplicada a la entrada clock. El funcionamiento del modulo esta descrito en el problema 1. Explique su respuesta.

2. (10 puntos) Muestre como construir un circuito que, una vez entre en su ciclo normal de operación, divida la frecuencia del reloj por cinco usando el siguiente modulo solamente. En otras palabras, se desea obtener una señal cuya frecuencia $f_{\text {out }}=f_{\text {clock }} \div 5$ donde $f_{\text {clock }}$ representa la frecuencia de la señal del reloj, aplicada a la entrada clock. El funcionamiento del modulo esta descrito en el problema 1. Explique su respuesta.

Respuesta:

Cualquier contador con cinco cuentas (una secuencia de cinco números consecutivos) producirá un patrón en la salida con frecuencia igual a un quinto de la del reloj. Si se utiliza la secuencia de 4 a 8 (secuencia con números $4,5,6,7$ y 8), el circuito puede implementarse \sin compuertas externas pues A_{3} se puede conectar a la entrada Load, como muestra el siguiente diagrama.

La frecuencia de la salida A_{3} es $f_{\text {clock }} \div 5$.

