

Fig. 1-1 Transfer of information with registers
© 2002 Prentice Hall, Inc.
M. Morris Mano

DIGITAL DESIGN, 3 e.

Fig. 1-2 Example of binary information processing

Fig. 1-3 Example of binary signals

Números binarios

- usan base 2
- digitos son \varnothing y 1
- "digitos" binarios \Rightarrow bits
-8 bits $=1 \mathrm{byte}$
Conversión binario-decimal
- posición del bit determina potencia de 2

$$
\begin{aligned}
\Rightarrow 01101_{2} & =\left(1 \times 2^{0}+1 \times 2^{2}+1 \times 2^{3}\right) 10 \\
& =1+4+8=1310
\end{aligned}
$$

- para fraccioves, use potencias negativas

$$
0.0112^{-2}+2^{-3}=\frac{1}{4}+\frac{1}{8}=0.25+0.125=0.375_{10}
$$

$\left.\begin{array}{ll}2^{-1} \\ 2^{-2} \\ 2^{-3}\end{array}\right]\left[\begin{array}{l}\text { subscrito indica base }\end{array}\right.$

Octal

- base es 8
- agrupar número binaris en grupos de 3 bits y convertir
- digitos validos son $\varnothing-7$
- conversion octal-decimal \Rightarrow puede usar potencias de ε

$$
\begin{aligned}
35.5_{B} & =\left(3 \times 8^{1}+5 \times 8^{0}+5 \times 8^{-1}\right)_{10} \\
& =24+5+\frac{5}{8}=29.625_{10}
\end{aligned}
$$

hex

- basees 16
- agrupar bits en grupos de 4 y convertir
- digitos validos son $\phi-a, A, B, C, D, E, F$
- conversion hex-decimal \rightarrow usar potencias de 16

$$
\left.\begin{aligned}
& \underbrace{0001}_{1} \underbrace{1101}_{D} \cdot \underbrace{1010}_{A}=10 \cdot A_{16} \\
&=16+13+\frac{10}{16}=29.62 S_{10} \\
& 1 \times 16^{1}
\end{aligned}\right|_{13(D) \times 10^{\circ}} ^{10} \times 16^{-1}
$$

Conversion decimal-binario (enteros)

$$
\frac{N}{2}=x+y=\text { cociente }+ \text { residuo }
$$

$$
\sum_{\text {rueva } N}^{\text {cociente }+ \text { residuo }}\left[\begin{array}{l}
\text { si residuo }=\phi \text {, bit es } \phi \\
" \quad N=\frac{1}{2} \text {, bit es } 1
\end{array}\right.
$$

Se continua dividiendo entre 2 hasta que N es ϕ
Ejemplo:

$$
\begin{array}{rlrl}
23_{10} \div 2 & =11+\frac{1}{2} & \Rightarrow a_{0}=1 \\
11 \div 2 & =5+\frac{1}{2} & & \Rightarrow a_{1}=1 \\
5 \div 2 & =2+\frac{1}{2} & & \Rightarrow a_{2}=1 \\
2 \div 2 & \Rightarrow a_{3}=0 \\
1 \div 2 & =0+\frac{1}{2} & & \Rightarrow a_{4}=1 \\
\therefore 23_{10}=10111_{2}
\end{array}
$$

Fracciones

$$
\begin{aligned}
N \times 2 & =\text { entero }+ \text { fraccion } \\
.2 \times 2=0.4 & \rightarrow a_{-1}=0 \\
.4 \times 2=0.8 & \rightarrow a_{-2}=0 \\
.8 \times 2=1.6 & \rightarrow a_{-3}=1 \\
.6 \times 2=1.2 & \rightarrow a_{-4}=1 \\
2 \times 2=0.4 & \rightarrow \text { vemos que la sedrenciase repetirá } \\
\therefore 0.210 & \simeq 0.001100110011 \ldots 2
\end{aligned}
$$

Suma de números binarios

carry-in	a	b	$z=a+b$	carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
\begin{array}{rl}
9 & 01001 \\
+\frac{6}{15} & \frac{00110}{011112}=1510 \\
\frac{9}{3} & 01001 \\
\frac{0}{12} & \frac{00011}{011002}=12.0
\end{array}
$$

Números con signo
Tres formas de expresarlos:

1. asignar el bit de la izq. al signo y los demás a la magnitud (signo tmagnitud)
2. Complemento de 1
3.

Ejemplo de signo tmagnitud (8 bits)

$$
\begin{aligned}
& 00101101_{2}=45,0 \\
& 10101101_{2}=-4510
\end{aligned}
$$

Si usamos signo + magnitud, podemos suman números - mirando los signos de los dos números A y B

- si el signo es el mismo
- sumamos magnitudes
- le asignamos el signo original a la suma
- si los signos no son iguales
- restamas la magnitud menor de la mayor
- le asignamos el signo de la mayor al resultado

Signo + magnitud \rightarrow deficil de implementar
Complemento de 1
Para formar el número negativo, cambiomos los ϕ por 1 y los 1 por ϕ

Ejemplo

$$
\begin{aligned}
& 001011012=+45.0 \\
& 11010010_{2}=-45,0
\end{aligned}
$$

(usando nomenclatura de comple. mento de 1)

Complemento de 2
Le sumamos 1 al complemento de 1
\therefore En nomenclatora de complemento de 2.

$$
\begin{aligned}
& 00101101,=+45,0 \\
& 11010010 \& 1^{\prime} \mathrm{s} \text { complement } \\
& 11010011 \& z^{\prime} \text { s complement }=-45,0 \\
& \text { hinario }
\end{aligned}
$$

Si sumamos $+45 y(-45)$ en binario

$$
00101101 \quad+45
$$

$$
\begin{aligned}
& 00101501 \\
& 11010011 \\
& 100000000
\end{aligned}
$$

descartamos porgue usamos 8 bits

Ejemplo $11_{10}+(-6,0)$ wondo 5 bits

$$
\begin{aligned}
+6 & =00110 \\
-6 & =11001+1=11010 \\
+11 & =01011 \\
+(-6) & =\frac{11010}{\frac{11}{p}} 00101
\end{aligned}
$$

descartamos

Ejercicios $1.18,1.20$

Table 1-4 Binary Coded Decimal (BCD)	
Decimal symbol	BCD digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD Arithmetic:

Must add 0110_{2} if sum is larger that 1010_{2}

BCD carry	1	1		
	0001	1000	0100	184
	$+\underline{0101}$	$\underline{0111}$	$\frac{0110}{1000}$	+576
Binary sum	$\overline{0111}$	10000		
Add 6	$\overline{1010}$	$\frac{0110}{}$	$\frac{0110}{}$	
BCD sum	$\overline{0111}$	$\overline{0110}$	$\underline{0000}$	$\overline{760}$

Table 1-7
American Standard Code for Information Interchange (ASCII)

$b_{4} b_{3} b_{2} b_{1}$	$b_{7} b_{6} b_{5}$							
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	-	p
0001	SOH	DCI	!	1	A	Q	a	q
0010	STX	DC2	"	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	.	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	,
1100	FF	FS	,	$<$	L	1	1	,
1101	CR	GS	-	$=$	M	1	m	\}
1110	SO	RS	.	$>$	N	\wedge	n	\sim
1111	SI	US	1	?	O	-	-	DEL

Fig. 1-4 Symbols for digital logic circuits

Fig. 1-5 Input-output signals for gates

(a) Three-input AND gate

(b) Four-input OR gate

Fig. 1-6 Gates with multiple inputs

