Determine the PLA programming table needed to implement the following two boolean functions. Minimize the number of product terms. Show all your work, including the Karnaugh maps used in the minimization.

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(1,3,4,5,7,13,15) \\
& \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,2,3,6,7,8,10,11,12,14)
\end{aligned}
$$

Write your result in the following table.

Product terms	Inputs				$\begin{array}{r} \\ \left(\begin{array}{r} \mathrm{C} \\ \mathrm{~F}_{1} \\ \hline \end{array}\right. \\ \hline \end{array}$	F_{2}

Note: not all rows need to be used

F_{1}

$$
\begin{align*}
F_{1} & =A^{\prime} D+B D+A^{\prime} B C^{\prime} \tag{1}\\
& =A^{\prime} D+A^{\prime} B C^{\prime}+A B D \tag{2}\\
& =\left(C D+A B^{\prime}+B^{\prime} D^{\prime}+A D^{\prime}\right)^{\prime} \tag{3}
\end{align*}
$$

(4) $F_{2}=A^{\prime} C+B^{\prime} D^{\prime}+A D^{\prime}+B^{\prime} C$
(5) $=\left(C^{\prime} D+A^{\prime} B C^{\prime}+A B D\right)^{\prime}$
using
(1) \& (4) \rightarrow no commonterms; $3+4=7$ terms
(2) $\&(4) \rightarrow 7$ terms
(3) $\&(4) \rightarrow B^{\prime} D^{\prime}, A D^{\prime}$ are common; $4+4-2=6$ terms
(1) \& (S) $\rightarrow A^{\prime} B C^{\prime}$ is common; $3+3-1=5$ terms
(2) \&(5) $\rightarrow A^{\prime} B C^{\prime}$ \& $A B D$ are common; $3+3-2=4$ terms
(3) $\{$ (5) \rightarrow no common terms; $4+3=7$ terms
\therefore select (2) 5

