

Miller Indeces

Manuel Toledo NEL 5209 - Solid State Devices Lecture 2 - Spring 2012

mtoledo@ece.uprm.edu

Electrical and Computer Engineering University of Puerto Rico

Miller Indeces – p. 1/22

Review - Unit cells

(a) Sample 2D lattice and (b) unit cell.

Review - Unit cells

Figure 1.1 Introduction to the unit cell method of describing atom arrangements within crystals. (a) Sample two-dimensional lattice. (b) Unit cell corresponding to the part (a) lattice. (c) Reproduction of the original lattice. (d) Basis vectors. (e) An alternative unit cell.

Review - Cubic 3D cells

Figure 1.2 Simple three-dimensional unit cells. (a) Simple cubic unit cell. (b) Pedantically correct simple cubic unit cell including only the fractional portion (1/8) of each corner atom actually within the cell cube. (c) Body-centered cubic unit cell. (d) Face-centered cubic unit cell (After Pierret.^[3])

Review - Bravais lattices

Review - Unit Cells

- Unit cells are not unique.
- A unit cell need not to be primitive.
- A primitive cell is the smallest unit cell possible.
- The Bravais lattices represent the 14 unique ways of arranging points in a 3D lattice.
- Lattice points do not correspond one-to-one to atoms in a crystal.

Review - Diamond unit cell

Si and Ge crystallize in the diamond unit cell.

Miller Indeces - p. 7/22

Review - Zinc-Blende u.c.

GaAs crystallizes in the Zinc-Blende unit cell.

Wigner-Seitz Unit Cell

- Way of defining the u.c.
- Preserve symmetry of lattice
- Constructed a s follows:
 - 1. Close a lattice point as the origin
 - 2. Draw lines from this origin to all nearby lattice points
 - 3. Erect planes normal to each tie line and placed halfway between the lattice points.
 - 4. The planes intercept and form a 3D box.
 - 5. The smallest volume enclosed by this construction is the WS unit cell.

Cell construction.

W-S Cell for BCC

WS cell for the bcc lattice.

WS Cell for FCC

WS cell for the fcc lattice.

Miller Indeces - p. 12/22

Miller indeces

(101)

(110)

(011)

Miller indices for planes

 \blacksquare miller indices are (326)

Miller indices for planes

Example 2

- intercept is: 2, 1, -2
- reciprocals: 1/2, 1, -1/2
- **•** express as: 1/2, 2/2, -1/2
- indices: $(12\overline{1})$

Miller indices for planes

Example 3

- Plane is parallel to z-axis
- Intercepts: $2, 3, \infty$
- **•** Reciprocals: 1/2, 1/3, 0
- Indices: (320)

Bravais-Miller Indices

Used for Hexagonal lattices.

Use four axes:

- $a_{1,2,3}$ on the base, 120° from each other
- the other (Z) perpendicular to $a_{1,2,3}$
- Consider the surface parallel to a_1 and to Z
- 4 indexes:
 - Intercepts: $\infty, 1, -1, \infty$
 - Indices: (0110

Miller indices

Angle between planes

To get the angle θ between 2 planes

- $\vec{v_1}$ and $\vec{v_2}$: normalized perpendicular vectors

Textbook fig. 1.10

- wafers up to 6 inches in diameter have a flat
- flat indicate type and orientation:

surface plane	primary flat
(100)	(011)
(111)	$(\bar{1}10)$

bigger wafers have a small notch instead of a flat

How do you position the wafer so that the pattern is aligned in the $[11\bar{2}]$ direction?

Miller Indeces – p. 22/22