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1 Resistance

1.1 Basics

1.1.1 Integral Form of Ohm’s Law

• Ohm’s Law: I = V/R

• Integrated Circuit Resistor (fig. 1)

R = ρ
L

xjW

• ρ is the material’s resistivity

• conductivity = σ = 1
ρ

• Sheet resistance: RS = 1
σxj

R = RS
L

W

Sheet resistance is expressed in Ω/�.

• Example: For R = 3.5kΩ, and a sheet resistance of RS = 200Ω/� and a feature size W = 1µm, use
L = 17.5µm.

• The smaller W the better.

1.1.2 Integral vs. Differential Physical Quantities

• Integral = Average → like above form of Ohm’s Law

• Differential = local → more accurate model.

• Conductivity varies with depth. See figure 2.
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Figure 1: Textbook figure 1.2.

Figure 2: Typical conductivity profile.
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• Average value of conductivity is used as an approximation.

σ̄ =
1

xj

∫
∞

0
σ(x)dx

• Average conductivity → no information about current distribution in resistor.

• For fig. 2, using x0 =
√

2, we can find the average conductivity:

σ(x) = σ(0)e−(x/x0)2

σ̄ =
10

xj

∫
∞

0
e−(x2/2)dx

=
10(Ω − cm)−1

3µm
×

√

π/2µm

= 4.18(Ω − cm)−1

Integration was performed using what is known as Laplace integral.

• Using this device, to build a 100kΩ resistor

RS =
1

σ̄xj

=
1

4.18(Ω − cm)−1 × 3µm

= 797.4Ω/�

L

W
=

R

RS
=

100, 100Ω

797.4Ω
= 125

For a feature size of W = 1µm, L = 125µm is required.

1.1.3 Differential form of Ohm’s Law

• The differential form of Ohm’s Law is

j = σE

where j and E are vectors.

• j = drift current = current induced by an electric field.

• In terms of the electric potential, ϕ,

E = −∇ϕ = −∂ϕ

∂x
x̂ +

∂ϕ

∂y
ŷ +

∂ϕ

∂z
ẑ

• Three-dimensional drift current:

j = −σ∇ϕ

• To handle multi-dimensional aspects of the problem (like the corner effect) requires knowledge of
the electric potential distribution.
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• Semiconductor devices are based on externally influencing the conductivity, σ.

• Two things directly influence the conductivity:

– concentration of carriers.

– mobility of carriers.

• The conductivity is proportional to the carrier concentration and the mobility.

• Example: Find the maximum current density and the terminal current for the resistor designed in
the previous example if a voltage of 5V is applied. Neglect corner effects.

ANSWER: From our previous results, L = 125µm. Thus

E =
V

L
=

5V

125µm
= 40kV/m

Since
jmax = σmaxE

and from figure 2 σmax = 10(Ω − cm)−1,

jmax = 4 × 107A/m2

To find the terminal current, integrate j from 0 to xj (or to ∞) and multiply by W ,

I = W

∫
∞

0
j(x)dx = W

V

L
σ(0)

∫
∞

0
e(x/x0)2dx

which yields a result of 50µA.

2 Chemical-bond Model

• Periodic table groups III to V are important. See figure 3.

• Two types of carriers: electrons and holes.

• Doping:

– intrinsic: pure semiconductor.

∗ Hole and electron concentrations are equal:

n = p = ni

∗ Conductivity:

σ = qnµn + qpµp

∗ See typical numbers in table 1

– n-type - donors (group V atoms or impurities) are added.

n ≈ ND � p;σ ≈ qµnND
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Figure 3: Elements used in semiconductor devices.

ni (cm−3) µn (cm2/(V − s)) µp (cm2/(V − s))
Si 1.02 × 1010 1450 500

GaAs 2.1 × 105 8500 400

Table 1: Mobility and carrier concentration at 300K.
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– p-type semiconductors - acceptors (group III atoms) are added.

p ≈ NA � n;σ ≈ qµpNA

• At thermal equilibrium, recombination rate equals carrier generation rate.

• The Mass-action Law is a consecuence of thermal equilibrium, and is expressed as

np = n2
i

• If donors (acceptors) are added to the semiconductor, more holes (electrons) recombine with the
majority carriers, i.e. the extra electrons (holes). As a consequence the mass-action law holds also
for extrinsic semiconductors.

• Minority-carrier concentration:

– N-type

p = n2
i /ND

– P-type

n = n2
i /NA

• Example: Consider N-type Silicon sample for which ND = 1016cm−3. Find: (i) the minority carrier
concentration, and (ii) the samples conductivity.

ANSWER: (i) p =
n2

i

ND
; (ii) σ = qµnND

• Example: Determine the resistivity of a Silicon crystal if ND = 1017cm−3 and NA = 1016cm−3. Use
µn = 770cm2/V − s.

ANSWER: The N-type semiconductor as been partially compensated by adding acceptors. As a
consecuence the effective donor density is n = ND − NA = 9 × 1016cm−3 and

ρ =
1

qµnn
= 0.09 Ω − cm

• Example: A P-type Silicon sample with resistivity of 0.5Ω− cm is illuminated by a flash of light that
creates 2 × 1016 electron-hole pairs per cm3. Determine (i) the electron concentration, and (ii) the
change in resistivity caused by the flash of light.

ANSWER: (i)

p = NA =
1

ρqµp
= 2.5 × 1016

n =
n2

i

NA

(ii) Excess carriers can not be neglected. Add them to find n and p and use

ρ =
1

q(µnn + µpp
)
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3 Carrier Mobility

• Mobility directly determines conductivity.

• Model of hole and electron gas: charged spherical particles performing random thermal motion.
Used to describe transport phenomena.

• Mass of isolated electron: constant m0 = 9.1 × 10−31kg.

• Electron in a solid: interact with semiconductor atoms.

– dopants

– traps

– phonons

• To use electron gas model an effective mass m∗ is used. The same thing is true for holes. Usually,
m∗ < m0. Notice that m∗ is not a constant, but depends on the semiconductor material and other
properties and conditions, such as doping level, temperature, etc.

• Particle’s momentum:

p = m∗v

• Particle’s energy:

Ekin =
| p |2
2m∗

• The kinetic energy of the carriers due to the crystal temperature is

Ekin =
1

2
m∗v2

th

and depends on the dimensionality of the model being use; for three-dimensions

Ekin =
3

2
kT

• vth is the thermal velocity and is random due to carrier scattering - collisions with crystal imperfections.

• If no electric field is applied, the drift velocity of the carriers is equal to zero.

• When an electric field is applied, the effective carrier motion is expressed as the drift velocity.

• See figures 4 and 5.
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Figure 4: Drift velocity concept.

Figure 5: vd versus E for Si. Published by Jacoboni, Canali, Ottaviani and Quaranta, Solid-State Electronics
20, 77 (Feb. 1977).
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3.1 Mobility

• If an electric field is applied,

For electrons: j = −qnvd = qµnnE

For holes: j = qpvd = qµppE

• If a ”small” electric field is applied (column b in figure 4), drift velocity represents a small perturba-
tion on random thermal velocity and the mean scattering time τcn is not altered appreciably.

• For steady state, the momentum gained between collisions is lost to the lattice in the collisions,
and equals the impulse (force times time) applied by the electric field. The force on the electron is
F = −qE. Thus

−qEτcn = m∗

nvd

or

vd = −
(

qτcn

m∗

n

)

E = −µnE

• mobility µ: relates drift velocity and electric field.

For holes: vd = µpE.

Units of mobility: < µ >= m2/V − s.

• On figure 5 we see that the mobility is constant only at low electric fields.

• Electrons and holes have different mobilities due in part to their different effective masses. Also,
mobility depends on the material since the effective mass also changes.

3.1.1 Dependence of Mobility on T and ND/NA

• Phonons = crystal vibrations.

• As temperature increases, phonons increase in magnitude. This increases phonon scattering. As T is
increased, the collision probability increases and the mean-free path decreases. Mobility is reduced
as a consequence.

• Impurity atoms (ions) also interact with carrier, attracting and repealing electrons and holes. This is
called Coulomb scattering.

• At low temperatures, Coulomb scattering is more effective because carriers spend more time close
to the ions. As temperature increases, Coulomb scattering is reduced and mobility increases at low
temperatures.

• At higher temperatures, phonon scattering dominates and the mobility decreases with temperature.

• See figure 6 and 7.

• The following empirical equations expressing the dependence on mobility on temperature Tn =
T/300 and dopant concentration N were proposed by:

N.D. Arora, J.R. Hauser and D.J. Roulson, IEEE Trans. Electr. Dev. ED-30, 292 (Feb. 1982).
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Figure 6: Temperature dependence of mobility in Si at different doping levels.

Figure 7: Temperature dependence of mobility in Si at low fields.
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µn = 88T−0.57
n +

1250T−2.33
n

1 + (N/(1.26 × 1017T 2.4
n )) 0.88T−0.146

n
(1)

µp = 54.3T−0.57
n +

407T−2.33n

1 + (N/(2.35 × 1017T 2.4
n )) 0.88T−0.146

n
(2)

• At high electric fields the hot electrons interact with the lattice through an additional scattering pro-
cess and mobility decreases. See figure 5.

• The following expression that approximates the data shown in figure 5 was provided by the authors
of the publication.

|vd| = vl
E

EC

(
1

1 + (E/EC)β

)1/β

For electrons, the fitting parameters vl, EC and β are, at room temperature, equal to 1.07× 107cm/s,
6910V/cm and 1.11, respectively.

• Problem 1.21 from textbook. An E = 1V/µm produces j = 0.8 × 109A/m2 on an N-type sample
with ND = 1017cm−3. Find the current density if the electric field is increased 5 times so that the
electrons reach velocity saturation vsat = 0.1µm/ps. Find the conductivity on both cases. ANSWER:
j = vsatqND; σ = j/E

• Problem 1.22 from textbook. A bar of Si with a uniform N-type doping concentration of 1015cm−3

is 1 cm. long, 0.5 cm. wide and 0.5 mm thick, and has a resistance of 190 Ω. Find (i) the electron
mobility, and (ii) the drift velocity of the electrons when 10V are applied to the ends of the bar.

ANSWER: (i) R = ρ L
t×W ; µn = 1

qNDρ . (ii) vd = µnE.

• Problem: An electron is moving in a piece of lightly doped Si under an electric field at room temper-
ature. Its drift velocity is one-tenth of its thermal velocity. Find (i) the average number of collisions
it will experience in traversing by drift a region 1µm wide. (ii) the electric field applied across the
region.

ANSWER: From vth =
√

3kT
m∗ , find vd = µnE. Total traversing time t = L/vd; use known µn to find

time between collisions is τ = m∗µn

q and then number of collisions t/τ . E can be obtained from vd

and µn.

• Problem: The voltage across a uniform 2 µm-long region of 1 Ω-cm , N-type Si is doubled, but the
current only increases by 50%. Assume room temperature. Find the applied voltage.

3.1.2 Haynes-Shockley Experiment

• Light pulse creates excess carriers - in this case, excess holes, above thermal equilibrium.

• Excess carriers drift due to the electric field. This gives place to a second kind of current due to
diffusion.

jdiff =

{
qDn

∂n
∂x electrons

−qDp
∂p
∂x electrons

• Excess carriers are collected at the terminals and a voltage pulse is observed.
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Figure 8: Haynes-Shockley experiment.
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• Monitoring the pulse peak, we can measure the time it takes the pulse to arrive; from this we can
figure out the carrier drift velocity.

vd = L/tmax

and the mobility

µp =
vd

E
=

L/tmax

V/L
=

L2

V × tmax

• Because of diffusion, the width of the pulse widens with time. The hole distribution can be ex-
pressed by a Gaussian form,

p = pmaxe
−

(x−xmax)2

4Dpt

For (x − xmax)2 = 4Dpt, p = pmax ÷ e. We can identify this level in the measured pulse and from it
measure

∆x =
√

4Dpt =
√

4Dp(tmax + ∆t)

Using vd = ∆x
∆t and also vd = L

tmax
, and solving for Dp yields

Dp =
((∆t × L)/tmax)2

4(tmax + ∆t)

• The diffusion coeficient is related to mobility by Einstein relation:

Dn,p =
kT

q
µn,p

4 Energy-band Model

4.1 Quantum Mechanics

• De Broglie Postulate

λ =
h

m0v

Implies the wave-particle duality.

• Atomic states or quantum numbers

– principal quantum number n

– orbital, or angular quantum number l

– magnetic quantum number m

– spin quantum number s
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Figure 9: Splitting of energy states into allowed bands separated by a forbidden energy gap as the atomic
spacing decreases.

• Pauli Exclusion principle: In a given system (which may be an atom, a molecule, or an entire crystal
made of interacting atoms), no two electrons can occupy the same quantum state.

• Atomic states in Silicon:

There are 14 electrons in each Silicon atom. Each electron state can be described as follows:

– First orbit (n = 1) have spherical symmetry and can not accommodate different angular nor
magnetic quantum numbers. It holds 2 electrons with different spin. These are the 1s2 elec-
trons.

– Second orbit: (n = 2) have two “sub-orbitals,” label s and p. The s sub-orbitals are spherically
symmetric and can only hold 2 electrons, identified as 2s2. The p sub-orbitals have x−, y− and
z−directional symmetry, and can thus hold 6 electrons, identified as 2p6.

– Third orbit: 3s2 and 3p6 sub-orbitals, but only 4 are filled.

• Electronic bands

Isolated atoms have electrons confined to single potential wells. A crystal represents a periodic
potential well. The many atoms that form a crystal form a single system and thus must satisfy Pauli
exclusion principle. Atomic states then must split in order to do so, and in the process they form
electronic bands. See figure 9.

• Energy gap values for some semiconductors

Material Eg (eV)
Silicon 1.12
Gallium arsenide 1.42
Germanium 0.66
Silicon dioxide (SiO2) 9
Silicon nitride (Si3N4) 5
Carbon 5.47
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Figure 10: Effects of doping in energy-band model presentation.

• P- and N-type doping introduce states in the energy gap. See figure 10.

4.2 Population of Energy Bands

• The probability that an electron occupies an electronics state with energy E is given by the Fermi-
Dirac distribution,

f(E) =
1

1 + e
E−EF

kT

where k is the Boltzmann constant, T is the absolute temperature, and EF is the energy of the Fermi
level. The Fermi energy is the energy at which the probability of occupation by an electron is one-half.

• If EC is the conduction-band energy, and if exp
(

EC−EF

kT

)

>> 1, then the mathematically simpler
Maxwell-Boltzmann distribution function can be used;

f(EC) ≈ e−
EC−EF

kT

• The MB distribution function can be obtain independently if the Pauli exclusion principle limitations
are ignored (i.e. any number of electrons can occupy an energy state). At energy well above Ef very
few states are occupied and exclusion-principle limitations have little effect.

• The concentration of free electrons can be expressed as

n = NCf

• Density of States for electrons (NC ) and holes (NV )

NC = 2

(
2πm∗

nkT

h2

)3/2

At room temperature NC = 2.86 × 1019cm−3 and 4.7 × 1017cm−3 for Si and GaAs, respectively.
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Figure 11: Fermi-Dirac distributions, plotted on (a) linear and (b) logarithmic scales.

The effective density of states in the valence band is

NV = 2

(
2πm∗

pkT

h2

)3/2

for both Si and GaAs.

At room temperature NV = 2.86 × 1019cm−3 and 7.0 × 1018cm−3 for Si and GaAs, respectively.

• If the exponential approximation to the Fermi-Dirac distribution is valid,

n ≈ NCe−
EC−EF

kT

p ≈ NV e−
EF −EV

kT

• For intrinsic semiconductors, EF is in the middle of the energy gap.

• For n-type semiconductors,

EF = EC − kT ln
NC

ND

• For p-type semiconductors,

EF = EV + kT ln
NV

NA

• Example: Find the equilibrium and hole concentrations and the location of Ef at 300K if Silicon is
doped with 8 × 1016 cm−3 arsenic (As) atoms and 2 × 1016 cm−3 boron (B) atoms.

ANSWER: Arsenic is penta-valent; boron is tri-valent. Thus the effective donor concentration is

ND,eff = ND − NA = 6 × 1016 cm−3 ≈ n

and
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Figure 12: (a) Fermi-Dirac distribution function; (b) density of states; and (c) product.

17



p =
n2

i

n
= 3.5 × 103 cm−3

With respect to the botton of the energy band, the Fermi level is at

EC − EF = kT ln

(
NC

ND

)

≈ 0.026eV ln

(
2.86 × 1019

6 × 1016

)

= 0.16eV

4.3 Bands under an Electric Field

• The bottom of the conduction band represents the potential energy of the electrons in the conduction
band.

• The top of the valence band represents the potential energy of the holes in the valence band.

• Potential energy is related to an electric potential ϕ applied to the semiconductor by

Epot = −qϕ

• A constant applied electric field results in a linear variation in the energy-levels in the crystal. Elec-
trons move down the hill on the conduction band when a field is applied.

5 Diffusion and Lithography

Important to for understanding:

• Semiconductor doping

• device physics

Basic concept of diffusion - see figures 1.7 and 1.8.

6 Making an IC Resistor

See fabrication sequence in figures 1.10.
Figure 1.11 shows an example of a doping profile.
See MATLAB Animations for sec. 1.3

6.1 Diffusion Equation

In one-dimension:

Jdiff = −D
∂N

∂x

In three-dimensions:

Jdiff = −D∇N
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Figure 13: Energy band diagram, showing carrier potential energy EC and EV versus position (E − x).
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Figure 14: Relationship between E −k and E −x diagrams for the simplest case in which the relationship
between kinetic energy and momentum is parabolic.
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6.2 Continuity equation

Consider a narrow region of width dx at a depth x from the surface. Assume that dopands enter the
region from the left and leave at the right, as shown in the following figure.

semiconductor
surface

J(x+dx)J(x)

x
dx

The change in concentration can be expressed as the difference between the influx and outflux of
dopands,

∂N

∂t
dx = J(x) − J(x + dx)

Expressing the last quantity by the first two terms of a Taylor series expansion,

J(x + dx) ≈ J(x) +
∂J

∂x
dx

Substituting in the previous equation and canceling common terms we get that

∂N

∂t
= −∂J

∂x

This is called the Continuity equation.

6.3 Fick’s Equation

• Combining the Diffusion and Continuity equations, we get Fick’s equation

∂N(x, t)

∂t
= D

∂2N(x, t)

∂x2

• the Diffusion Coefficient depends on temperature and is a material property:

D = D0e
−EA
kT

where

– T is the absolute temperature,

– k is Boltzmann constant,

– parameters EA and D0 are the activation energy and frequency factor depend on the semiconduc-
tor material and the doping species.

This exponential dependance makes the diffusion process strongly temperature dependant.

• D plays the same role than conductivity but for diffusion: i.e. D = − J
∂N
∂x

= current/driving force.

• Diffusion for IC fabrication is done in two steps:

– pre-deposition diffusion - constant-source diffusion, in which a constant surface dopant con-
centration is maintained.

– drive-in diffusion - the substrate is heated while no dopant concentration is provided at the
surface. Used to redistribute dopant atoms already in the substrate.
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• The solid-solubility limit is the maximum surface concentration of dopant atoms that the semicon-
ductor can absorb. Approximate values for Si are:

Dopant Solid-solubility limit
boron 4 × 1020cm−3

phosphorous 8 × 1020cm−3

arsenic 1.5 × 1021cm−3

antimony 4 × 1019cm−3

• To find N(x, t) Fick’s Equation must be solved for the appropriate boundary conditions. For the
pre-deposition step, the b.c. are

– no dopands at t = 0 for all depths: N(x, 0) = 0

– constant concentration on the surface equal to the solubility limit: N(0, t) = N0, and

– very far from the surface the dopand concentration is zero, no matter how long we wait:
N(∞, t) = 0

• The solution to Fick’s equation that satisfies these b.c.

can be expressed as

N(x, t) = N0erfc

(
x

2
√

Dt

)

=
2N0√

π

∫
∞

x

2
√

Dt

e−v2
dv

where erfc is the complementary error function.

See textbook figure 1.14 and 1.15a for plots of erfc.

• Typical pre-deposition temperature and time are 950◦C and 30 min.

• For the drive-in step, the boundary conditions are:

– total quantity of dopants remain constant:
∫
∞

0 N(x, t)dx = Φ

– very far from the surface the dopand concentration vanishes: N(∞, t) = 0

The solution to Fick’s equation that satisfies these b.c. is

N(x, t) =
Φ√
πDt

e−
x2

4Dt

where D and t refer to the value of these quantities during the drive-in step.

See textbook figure 1.15b for a plot of this expression.

• Φ is the dose of doping atoms incorporated into the substrate during pre-deposition, defined as the
dopand density per unit area, given in cm−2. Φ is a constant since no new atoms diffuse during the
drive-in step, and is given by

Φ = N0

∫
∞

0
erfc(

x

2
√

Dt
)dx

= 2N0

√

Dt

π
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• For a two-step diffusion process (predeposition followed by drive-in),

N(x) =

NS
︷ ︸︸ ︷

2N0

π

√

D1t1
D2t2

e
−

x2

4D2t2

where D1 and t1 and D2 and t2 refer to the predeposition and drive-in steps, respectively, and
NS = N(0) is the doping concentration at the surface after the drive-in.

• Example: Find D for boron at 1000◦C and 1100◦C assuming that D0 = 0.76cm2/s, EA = 3.46eV .
Use k = 8.62 × 105eV/K .

• Example: A constant-source diffusion is carried out at 1050◦C on an N-type silicon substrate with
background doping NB = 1016cm−3. The surface concentration is kept at the solubility limit N0 =
4 × 1020cm−3. Determine the diffusion time necessary to obtain a junction depth of 1µm.

• Example: A drive-in diffusion step is performed after the constant-source diffusion described in
the previous example. The time and temperature for the drive-in step are equat to those used for
the constant-source diffusion. Determine the final junction depth and surface doping concentration
after the drive-in diffusion is performed.
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