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1 Fermi Energy
It was established previously that a crystal will
exhibit bands of allowed energy states. For semi-
conductors these bands are separated by energy
gaps in which no states exist. The Fermi-Dirac
distribution

f =
1

1 + e
E−Ef

kT

relates the density of states N with the filled
state density, n by

n = N × f

at a given energy E for an isolated system.
The density of vacant states is given by

v = N × (1 − f)

Now consider what happens if two such sys-
tems are brought together and become a single
system. Initially, a non-equilibrium situation ex-
ists and electrons from one material transfer to
the other material. Eventually this process is
balanced by another that has the opposite effect.
Labeling the systems with the subscripts 1 and
2, we expect the transfer probability from ma-
terial 1 into material 2 to be proportional to the
density of filled states in 1 and the density of

vacant states in 2 at a given energy E

n1 × v2

At equilibrium this process is balanced by the
equivalent process going from 2 into 1;

n1 × v2 = n2 × v1

which can be expressed as

N1 × f1 × N2(1 − f2) = N2 × f2 × N1(1 − f1)

Canceling the density of states, which are com-
mon to both sides, and rearranging we get that

f1

1 − f1
=

f2

1 − f2

This requires the Fermi energy to assume
the same, constant, value throughout the whole
system.

2 Reverse-biased Junctions
A p-n junction is build by forming adjacent p-
and n-type regions. The interface between re-
gions is called the pn junction. At the junction
there are carrier concentration gradients for both
electrons and holes. This gives place to a diffu-
sion current across the junction. The holes that
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Figure 1: Sketch of a junction diode.

diffuse across the junction become excess mi-
nority carriers in the n-type region. Similarly,
diffused electrons are excess minority carriers
in the p-type region. These minority carriers
recombine as they reach deeper into the other
type region, leaving the device depleted of ma-
jority carriers near the junction. This gives place
to the depletion region, shown in figure 1.

When the excess minority carriers recombine,
fixed ions remain in the depletion region. These
ions generate an electric potential called the build-
in voltage. Diffusion across the junction contin-
ues until the build-in voltage becomes large enough
to prevent it.

2.1 Build-in voltage
As excess carriers recombine near the junction,
fixed ions remain. The electric charge represented
by these ions give place to an electric field that
cause the energy bands to bent. When the bend-
ing is enough to produce a drift current that can-
cels the diffusion current, the system reaches equi-
librium. The Fermi level is constant throughout
a system in thermal equilibrium, as shown in
figure 2.

The voltage drop across the depletion region
is said to form a barrier.This internal voltage gives
place to a drift current IS across the junction.
An equilibrium is reached when the diffusion
current due to the concentration gradient equals
the drift current due to the build-in voltage. At
equilibrium

ID = IS

From chapter 1 we know that for e−
EF −EV

kT �
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Figure 2: Electronic bands at equilibrium.

1,
p = NV e−

EF −EV
kT

Let the hole concentration for intrinsic ma-
terial be p = pi, and the corresponding Fermi
energy Epi. Using the formulae developed in
chapter 1 for intrinsic and extrinsic materials,

pi = NV e−
Epi−EV

kT

NA = NV e−
EF −EV

kT

NA

pi
=

e−
EF −EV

kT

e−
Epi−EV

kT

= e
Epi−EF

kT

or
Epi = EF + kT ln

(

NA

pi

)

(1)

Similarly, for the n-type side, calling the in-
trinsic material electron concentration n = ni

and the Fermi energy Eni, we get that

ni = NCe−
EC−Eni

kT

ND = NCe−
EC−EF

kT

ND

ni
=

e−
EC−EF

kT

e−
EC−Eni

kT

= e
EF −Eni

kT

and
Eni = EF − kT ln

(

ND

ni

)

(2)



2 REVERSE-BIASED JUNCTIONS 3

At both sides of the junction, the bands will
bent by qV0 to make the Fermi level the same, as
shown in figure 2. To find the build-in potential
V0, observe that

qV0 = Epi − Eni

After subtracting equation 2 from 1, divid-
ing by q and equating kT

q to VT , the build-in
voltage is found to be

VO = VT ln

(

NAND

n2
i

)

2.2 Externally-biased Junction
An external voltage can force carriers to cross
the junction. For that the positive terminal must
be connected to the p-type region and the nega-
tive terminal to the n-type region. The diode is
said to be forward-biased. Because of this, the n-
and p-type regions are called cathode and anode,
respectively.

If the external voltage makes the cathode more
positive than the anode, then the diode is reverse-
biased.

2.3 Reverse-biased Junction Capacitance
The capacitance of a reverse-biased junction can
be determined by modeling the situation as a
parallel capacitor, with the depletion region play-
ing the role of the dielectric. This depletion-layer
capacitance can thus be found from

Cd = εs
A

wd

where εs is the semiconductor permitivity (11.8×
ε0 = 11.8 × 8.85 × 10−12 F/m for Silicon), A is
the junction area and wd is the depletion-layer
width.

The width depends on the dopant profile.
Two limiting cases admit a closed solution and
are discussed in the next two sections.
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Figure 3: Sketch of an abrupt junction.

2.3.1 Abrupt Profile

If the dopant profile is such that at one side of
the junction there are no donors and at the other
side there are no acceptors, the junction is said
to be abrupt. A sketch is shown in figure 3. The
charge accumulated in each side of the deple-
tion region can be expressed as

qp = qNAxpA = qn = qNDxnA

Poisson’s equation,

d2ϕ

dx2
= − ρ

εs

must be integrated twice to find the electric po-
tential ϕ. It assumes the form

d2ϕ

dx2
=















0 if x ≤ −xn

− qND

εS
if −xn < x ≤ 0

+ qNA

εS
if 0 < x < xp

0 if x ≥ xp

Integrating once yields,

dϕ

dx
=















C1 if x ≤ −xn

− qND

εS
x + C2 if −xn < x ≤ 0

+ qNA

εS
x + C3 if 0 < x < xp

C4 if x ≥ xp

The solution must satisfy the following bound-
ary conditions:
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• The electric field E must be continuous

• E(−xn) = −dϕ
dx = 0

• E(xp) = −dϕ
dx = 0

Thus, after some algebra,

dϕ

dx
=















0 if x ≤ −xn

− qND

εS
(x + xn) if −xn < x ≤ 0

+ qNA

εS
(x − xp) if 0 < x < xp

0 if x ≥ xp

Integrating once more,

ϕ =



















C5 if x ≤ −xn

− qND

εS
(x2

2 + xnx) + C6 if −xn < x ≤ 0

+ qNA

εS
(x2

2 − xpx) + C7 if 0 < x < xp

C8 if x ≥ xp

The boundary conditions for the electric po-
tential ϕ are

• ϕ is constant for x ≤ −xn and x ≥ xp

• ϕ(−xn) = V0

• ϕ(xp) = 0 (defined as ground)

After applying these boundary conditions,

ϕ =















V0 if x ≤ −xn

V0 − qND

2εS
(x + xn)2 if −xn < x ≤ 0

+ qNA

2εS
(x − xp)

2 if 0 < x < xp

0 if x ≥ xp

Requiring continuity at x = 0

V0 −
qND

2εS
x2

n = +
qNA

2εS
x2

p (3)

Since the amount of ionic charge is equal on
both sides of the junction,

qxpNA = qxnND

This can be expressed as

xp =
ND

NA
xn

and

Wdep = xn + xp = (1 +
ND

NA
)xn =

NA + ND

NA
xn

Substituting int equation 3 and rearranging,

V0 =
q

2εS

(

NDx2
n + NAx2

p

)

=
qND

2εS

(

x2
n +

NA

ND
x2

p

)

=
qND

2εS
x2

n

(

NA + ND

NA

)

and

xn =

√

2εS

qND

NA

ND + NA
V0

The depletion region charge is given by

qj = NDqAxn

= qA

√

2εS

q

NAND

ND + NA
V0

For a reverse-biased junction to which an ex-
ternal voltage Vbias is applied, replace V0 with
V0 + Vbias

qj = qA

√

2εS

q

NAND

ND + NA
(V0 + Vbias)

Now apply the definition of capacitance,

C =
dq

dV

to the junction charge using the applied voltage,
Vbias as the voltage. Thus,

Cj =
dqj

dVbias
|Vbias=VR

where VR is the applied bias voltage.

Cj =
A

2

√

2qεS
NAND

ND + NA

1

V0 + VR

In terms of

Cj0 = A

√

qεs

2

(

NAND

NA + ND

)

1

V0
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the junction capacitance becomes

Cj =
Cj0

√

1 + VR

V0

Notice that these results can be expressed as

C2
j =

qA2εS

2

NAND

ND + NA

1

V0 + VR

or

VR =
qA2εS

2

NAND

ND + NA

1

C2
j

− V0

Thus if we measure Cj as we change VR and
plot VR versus 1/C2

j , we should get a straight
line with intercept −V0 and slope

qA2εS

2

NAND

ND + NA

This expression is, of course, valid only for
an abrupt junction.

2.4 Linear Junction
The junction is said to be linear if the dopant
concentration profile varies linearly from one side
of the junction to the other. The charge density
for this case can be expressed as

ρ = −ax

The Poissons equation becomes

d2ϕ

dx2
=

a

εS
x

Integrating once,

E = −dϕ

dx
=

a

εS

1

2
x2 + C1

This solution must be continuous. Also at x =
xp = +w

2 , E = 0. Thus

C1 = − a

εS

1

2
x2

p

and
dϕ

dx
=

a

2εS
(x2 − x2

p)

Integrating once more,

ϕ =
a

2εS
(
1

3
x3 − x2

px + C2)

Since ϕ must vanish at xp,

C2 = − a

2εS
(
1

3
x3

p − x2
pxp)

=
a

3εS
x3

p

and
ϕ =

a

2εS
(
1

3
x3 − x2

px +
2

3
x3

p)

At x = −xn = −w
2 , ϕ = V0 + Vbias. Using

xp = w
2 ,

V0 + Vbias =
a

2εS
(−1

3
x3

n − x2
pxn +

2

3
x3

p)

=
a

2εS
(−1

3
(
w

2
)3 + (

w

2
)3 +

2

3
(
w

2
)3)

=
a

2εS
(−1

3

w3

8
+

w3

8
+

2

3

w3

8
)

=
a

12εS
w3

or
w3 =

12εS

a
(V0 + Vbias)

The junction capacitance is thus given by

Cj =
AεS

w

= AεS
3

√

a

12εS

1
3
√

V0 + Vbias

= A
3

√

aε2S
12V0

1

3

√

1 + Vbias

V0

=
Cj0

3

√

1 + Vbias

V0

where

Cj0 = A
3

√

aε2S
12V0
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3 Parameter Estimation

3.1 General Problem Formulation
Given a mathematical description of a process,
or model

y = f(x,k)

where

• x = [x1x2x3 . . . xn]t represent n manipu-
lable or independent variables, indepen-
dently adjustable by the experimenter.

• y = [y1y2y3 . . . ym]t represent an m−dimensional
vector of dependent variables; being mea-
sured in the experiment.

• k = [k1k2k3 . . . kp]
t represent a p−dimensional

vector of parameters that are unknown.

• f = [f1f2f3 . . . fm]t is an m−dimensional
function of known form. These are the ac-
tual model equations.

find k such that the error between l measure-
ments and model predictions is minimum in some
well defined sense.

3.1.1 Pseudo-inverse

Consider a model consisting of a linear equation
such as

y = p1x1 + p2x2

where y is a measurable quantity, x1 and x2 are
manipulable variables, and p1 and p2 are pa-
rameters.

We want to obtain estimates of the parame-
ters based on measurements. Assume that n ex-
periments are performed, such that results y1,
y2 ... yn are available. For such experiments the
manipulable variables assumed values (x1

1, x
1
2),

(x2
1, x

2
2), ...,(xn

1 , xn
2 ).

If we combine the measures y’s with the es-
timates from our model,

y1 = p1x
1
1 + p2x

1
2

y2 = p1x
2
1 + p2x

2
2

.. .. ....

yn = p1x
n
1 + p2x

n
2

is obtained.
This can be expressed in matrix form,

Y = Xp (4)

where
Y = [y1y2...yn]t

X is a matrix given by

X =

∣

∣

∣

∣

∣

∣

∣

∣

x1
1 x1

2

x2
1 x2

2

.. ..
xn

1 xn
2

∣

∣

∣

∣

∣

∣

∣

∣

and P is a vector of parameters,

p = [p1p2...pn]t

To solve equation 4, multiply from the left
by Xt,

XtY = XtXp = Mp

to get a square matrix M. Now we can multi-
ply from the left by the inverse of M, called the
pseudo-inverse of X, and get

p = M−1XtY

It can be shown that a minimal-least-square-
error estimate of p obtained in this way.

3.1.2 Linear Regression

For the n experimental data described above,
we can write an equation for the square of the
difference between model predictions and mea-
sured data:

S =

n
∑

i=1

(yi − p1x
i
1 + p2x

i
2)

2

A maximum likelihood estimate of the parame-
ters p1 and p2 is obtained if S is minimized with
respect to the parameters. This means that

∂S

∂p1
= −2

n
∑

i=1

(

(yi − p1x
i
1 + p2x

i
2)

)

xi
1 = 0
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∂S

∂p2
= −2

n
∑

i=1

(

(yi − p1x
i
1 + p2x

i
2)

)

xi
2 = 0

Equivalently,

p1

n
∑

i=1

(xi
1)

2 + p2

n
∑

i=1

xi
2x

i
1 =

∑

i=1

nyixi
1

p1

n
∑

i=1

xi
1x

i
2 + p2

n
∑

i=1

(xi
2)

2 =
n

∑

i=1

yixi
2

By defining

a11 =

n
∑

i=1

(xi
1)

2

a12 =

n
∑

i=1

xi
2x

i
1

a21 =
n

∑

i=1

xi
1x

i
2

a22 =

n
∑

i=1

(xi
2)

2

b1 =
n

∑

i=1

yixi
1

b2 =

n
∑

i=1

yixi
2

and
A =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

p = (p1p2)
t

b = (b1b2)
t

we can express the solution to the above matrix
equation as

p = A−1b

3.1.3 Junction Capacitance Parameter

Both the abrupt and linear junction models yield
results that can be expressed as

Cj = Cj0

(

1 +
VR

V0

)

−m

(5)

with m = 1/3 for the linear junction and to 1/2
for the abrupt. If the capacitance Cj is measured
several times, estimates for Cj0, V0 and m could
be obtained.

To use the previously described methods, it
is necessary to modify the above expression for
Cj so that it becomes linear. Recognizing the
fact that any capacitance measurement will in-
clude a parasitic capacitance Cp, we can take
logarithms on both sides of equation 5 to get

log(Cj − cp) = log(Cj0) − m × log

(

1 +
VR

V0

)

This is still not a linear equation due to the pres-
ence of V0 and Cp. To apply the estimation meth-
ods described above, it is necessary to assume
values for these parameters and then perform
the estimation. Rather than relying on a single
guess, the fitting procedure can be done several
times with different values of V0 and Cp. The
square of the difference between experimental
and calculated values can be found each time
a new pair of values is tried, and then the pair
that yields the lowest difference be chosen.

Notice that both the pseudo-inverse and lin-
ear regression methods can be used on a the model
of the form

p1x1 + p2

such as the one obtained for the junction, simply
by replacing all x2 by 1 in the above formulae.

4 Diode Current
See slides 5 and 6.

Forward voltage injects excess minority car-
riers at the depletion region boundaries. Excess
minority carriers diffuse due to the concentra-
tion gradient.
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Electrons drift through the depletion region,
then diffuse through the neutral regions.

Assumptions:

• No recombination in the depletion region.

• Negligible voltage drop in the neutral re-
gions.

Diffusion equation for electrons: linear ap-
proximation.

Jn = qDn
∂np(x)

∂x
≈ npe − np(wp)

Ln

where

• npe is equilibrium concentration of elec-
trons in p-type side.

• Ln is the diffusion length of electrons.

Fermi-Dirac Distribution:

f =
1

1 + e(E−EF )/kT
≈ e−

E−EF
kT

Energy barrier when voltage V is applied:
q(V0 − VD). V0 is the build-in voltage.

Excess electron concentration at wp

np(wp) ∝
∫

∞

q(V0−VD)

e−
E−EF

kT dE

After integration, we get that

np(wp) ∝ e
qVD
kT

and thus
np(wp) = Ce

qVD
kT

Since for vD = 0, np(wp) = C = npe,

np(wp) = npee
qVD
kT

The electron current density becomes

Jn = qDn
npe − np(wp)

Ln

= qDn
npe(1 − e

qVD
kT )

Ln

=
qDnnpe

Ln
(1 − e

qVD
kT )

Using npe =
n2

i

NA
, replacing Ln by wanode be-

cause Ln � wanode, and multiplying by the junc-
tion area A, we get the current due to electrons:

in = − qADnn2
i

NAwanode
(e

qVD
kT − 1)

where the fact that conventional current is op-
posite to electron flow was used.

The junction current due to both holes and
electrons is

iD = IS(e
qVD
kT − 1)

where

IS =
qADnn2

i

NAwanode
+

qADpn
2
i

NDwcathode

4.1 Second-order Corrections
There is recombination in the depletion region.
Carrier with energy below q(V0 −VD) can pene-
trate a fraction of the depletion region, and can
recombine there. Therefore, it is possible for an
electron and a hole, each with energy q V0−VD

2 to
reach the middle of the d.r. and recombine, pro-
ducing a current proportional to V0−VD

2 .
To take into account for recombination in the

depletion-region, the diode equation is modi-
fied to

iD = IS(e
qVD
ηkT − 1)

where η is a parameter that take values between
1 and 2.

See slide 7.
The resistance due to the metal-semiconductor

contacts and neutral regions are taken into ac-
count by adding a resistor rS to the diode’s model.

See slide 8.
Measurement of diode static parameters: see

slide 10.

4.2 Stored-charge capacitance
For reverse-biased junctions, the depletion-layer
capacitance dominates the dynamic response.
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For forward-bias voltages large than about
V0

2 the stored-charge capacitance CS is more im-
portant.

CS is due to excess minority-carrier accumu-
lation at the edge of the depletion region, which
represent a stored charge QS .

See slide 11.
If a forward-bias is suddenly turned off, re-

moving QS takes time. Current iD does not drop
to zero until QS is removed.

See slide 12.
This process of CS discharge determines the

time-response and high-frequency behavior of
the diode.

SPICE model incorporates this effect by us-
ing a parameter called the transit time τt. CS =
τt

diD

dVD0

.

4.3 Temperature Effects
Exponent in diode equation shows temperature
dependence.

IS is proportional to n2
i which have a strong

temperature dependence.
Slide 13 shows the temperature dependence

of a Silicon diode. This dependence can be ap-
proximated by a temperature coefficient of −2mV/◦C.

See table 3.6 in textbook for temperature de-
pendence of Cd.

5 Breakdown

5.1 Avalanche Breakdown
See Slides 14, 15 and 16.

Electrons move through the depletion region
under reverse bias, Kinetic energy gained be-
tween collisions: Ekin = −qEx

• E: applied field

• x: distance between collisions

Average distance between collisions = scat-
tering length = lsc

Because lsc � wd, the width of the depletion
region, many collisions happen before the elec-
tron crosses the depletion region.

Avalanche breakdown happens when Ekin =
−qElsc > Eionization , the ionization energy needed
to create an electron-hole pair.

Temperature increases phonon scattering, re-
ducing lsc and thus increasing the field neces-
sary for avalanche breakdown. The breakdown
voltage exhibits a positive temperature coeffi-
cient.

Avalanche breakdown voltage depends on
doping. Higher doping increases build-in volt-
age and reduces breakdown voltage.

Avalanche occurs at voltages larger than 6V.

5.2 Tunneling Breakdown
Electron wave-function penetrates across the de-
pletion region.

Reverse bias produces band bending, which
reduces depletion region width. See slide 16
right-hand side figure (a) and (b).

As bending increase, conduction band in the
n-type side falls below valence band in the p-
type side.

When this happens a tunneling current is es-
tablished.

Tunneling is effective due to the large con-
centration of electrons in the valence band of the
p-type side of the junction. Even a very small
probability can cause a significant tunneling cur-
rent.

Very narrow depletion regions are required
for tunneling to be effective. This require high
doping levels.

For tunneling diodes the t.c. is negative.
Tunneling occurs at lower voltages than avalanche,

typically. ¡ 6V.

6 Metal-Semiconductor Contact
Used to construct Schottky diodes.

See slide 17.
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Energy-band diagrams are drawn so that the
vacuum level match.

Electrons in solid have negative energy with
respect to that of an electron in vacuum.

The energy needed to remove an electron from
the metal is the work function, qφm, is the differ-
ence between the vacuum energy and the Fermi
level.

See slide 18.
The Fermi level of an n-type semiconductor

is higher that the metal’s. Conduction band elec-
trons are at a higher energy in the semiconduc-
tor than in the metal.

When the metal-semiconductor is formed, elec-
trons from the semiconductor flow into the metal
leaving behind ions and forming a depletion re-
gion.

Thermal equilibrium is reached when the Fermi
levels are equal at the interface.

See slide 19.
A potential barrier equal to the difference be-

tween the Fermi levels is formed.

qV0 = qφm − qφs

The barrier in the metal is

qφB = qφm − qξs

where ξs is the electron affinity (difference in en-
ergy between bottom of the conduction band
and vacuum) of the semiconductor.

The reverse bias current in a Schottky diode
is

IS = IS0e
−

qφB
kT

where IS0 is a constant that depend on tem-
perature. This quantity plays the same role than
the saturation current in the junction diode.

The forward-bias current in the Schottky diode
can be modeled with the same equation used for
the junction diode:

ID = ISe
VD
kT

the build-in voltage V0 is smaller for Schottky
diodes than for junction diodes. See slide 20 and
21..

In Schottky diodes all carriers are electrons.
Thus there is no charge storage and consequently
Schottky diodes are faster than junction diodes.
The cost is a larger IS .

In the case of heavily-doped n-type semicon-
ductor, a very narrow energy barrier is formed.
This barrier is not high enough to prevent elec-
trons from crossing. Also the depletion region
is very narrow an tunneling takes place. Since
the barrier is not effective to stop electrons from
crossing across the interface, an Ohmic contact is
formed.

See slides 22 and 23.


