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Abstract

Quantum mechanics is not part of the traditional curriculum in electrical engineering because classic concepts
suffice to explain the main aspects of the device’s operation. However, due to the small size of the devices used
in modern integrated circuits, which approach atomic dimensions, an understanding of quantum concepts is in-
creasingly important for device engineers. Furthermore, many new technologies make used of quantum effects
to produce novel devices that might find place in commercial circuits in the future. This document offers a brief
introduction to the basic ideas of quantum theory as they apply to solid state devices.

1 The Need for a Quantum Theory

In the early 1900’s, experimental disagreement between predictions of classical mechanics and some experimen-
tal observations drove some well known scientists to formulate alternative theories. Some of the most important
examples in which quantum concepts were used are:

e Blackbody radiation: solids emit light when they are heated. The emission spectra was in disagreement with
classical predictions (Rayleigh-Jeans law). In 1901 Max Planck explained the measured spectra by assuming
that atoms could only absorb or emit light in discrete packets.

e Sharp spectral lines emitted by heated Hydrogen gas: In 1910 Bohr explained the results based on a model
that assumed angular momentum quantization

o Photoelectric effect: electro-magnetic waves exhibit particle-like properties. In the mid 1920, De Broglie sug-
gested that particles should also exhibit wave-like behavior, and hypothesized that the wavelength can be
found from momentum using the relationship

p=nh/\

2 Basic Postulates

o There exist a complex quantity called the wavefunction ¥ = ¥(z,y, z, t) from which the all desirable variables
of a system can be obtained.

e For a given system constrains, ¥ is determined by solving the time dependent Schrédinger equation:

OV h o,

where U represents the potential energy of the system and ¢ = v/—1.



¥ and V¥ must be finite, continuous and single-valued.

e The probability of finding the particle in the spacial volume dV is ¥*¥dV, where ¥* is the complex conjugate
of W.

This implies that

/ U*wdv =1
14

e There is a mathematical operator «,, associated to each dynamic system’s variable ¢, such as energy and
momentum. The expectation value of the quantity can be found from
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e The momentum operator is 2-2, where r can be z, y or z. Thus once the wavefunction has been found, the
expectation value of the momentum in the z direction can be determined from

h ov
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e The energy operator is —2 2

21 Time-independent Formulation

If the total energy FE is constant, the problem can be simplified as follows. The energy expectation value is

h O
E>= [ o (-=Z")d
D /V <z’8t>v

For this integral to equal E, one must have that
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This requires a general solution of the form:

U(x,y,2,t) = Yz, y, 2)e B/

The Schrodinger equation can then be expressed in its simpler, time-independent form:

V2¢+ 7 (E-U(z,y,2)9 =0

3 Examples

3.1 Free Particle

Consider a particle of mass m that finds itself alone in the universe and that has total energy equal to E. Such
particle experiences no forces (F = VU = 0) so the potential energy is constant and can be chosen to be zero. For
simplicity, let the particle’s universe be one-dimensional,
To characterize the particle from the point of view of quantum mechanics, one must solve the time-independent
Schrodinger equation
d*y  2mE

d2+ h?

b =0

Using the trial solution
1/) _ Aeikm + Befikz



one obtains

O _ ipAet _ igBehe
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621/] 2 ikx —ikx
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= —k%

which demonstrates that v is a solution provided that

Thus for this problem

\P(I,t) :Aei(szgt) —|—B€7i(kz+%t)

The right hand side terms have the form of results from classical wave analysis dealing with electromagnetism,
sound, etc,

and

ei(kw—wt)

e*i(kaH»wt)

These expressions correspond to waves traveling in the +z and —x directions, respectively, where k = 2T is the
wavenumber and w is the angular momentum of the traveling wave. By analogy:

The free particle wavefunction is interpreted as a traveling wave.
If the particle moves in the z direction, B = 0. If it moves in the —z direction, A = 0.

Since, for a particle moving in the +x direction,
P*p = AT A = constant
for all values of =, one has equal probability of finding the particle anywhere.

The particle’s momentum is

< hd
<pgp > = / w*——wdw

1 dx
= hk/ Y pdr

>3

in agreement with classical mechanics.

We know the particle’s momentum with complete precision but know nothing about the particle’s position.
This is in agreement with the Heisenberg’s Uncertainty Principle, which postulates that

Ap X Az ~ h

where A expresses uncertainty. Thus complete certainty of the particles momentum requires complete uncer-
tainty of the position.

The particle can be localized in some region of space by forming adding several different versions of ¢, each
with different values of k, A, and B. Such superposition of sinusoids form what is known as a wavepacket, and
resembles the formation of a waveform of arbitrary shape with a Fourier series. By doing so we have to use
different values of momentum; thus we reduce the uncertainty in position by increasing that of momentum,
in agreement with the above uncertainty principle.
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Figure 1: Example illustrating wafefunction superposition. (Taken from Craig Casey, 1999).
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Figure 2: An electron approaching a potential barrier.



3.2 Electron Meeting a Potential Barrier

Consider a potential with the shape shown in figure 2.  For simplicity lets consider again a one-dimensional
universe.

We must now solve two equations. For z < 0 the electron is free (U = 0), and the solution is the one found in
the previous example:

1/) _ Aeikm + Be—ikw
For « > 0, U = V3 and the Schrdinger Equation becomes

0% 2m
a2 T BT Vv =0
which is similar to the one obtained for the free electron. Thus we should obtain solutions of the form
w _ Ceikgm + De—ikgm
where
2m(E - Va)
ko = —

Since at z = 0 the wavefunction must be continuous ¢(0—) = 1(0+) and A+ B = C'+ D Now consider a particle
incident from the left. For this case, we can set D = 0 and get that

A+B=C
Because g—f is also required to be continuous,
ikA — ikB = ikoC

or k(A — B) = koC, which can be expressed as C' = % (A — B). Substituting in the previous expression yields

A+B = E(A—B)
2
k k
All-=) = -B(1+—
< k2> < +k2>
k — ko k + ko
A = B—=
ko ko
B k—k
A k+ke
and
g_ 2k
A k+ko

We can make the following observations about these results:
e If £ > 15,

— both k and k5 are real;

— solutions are oscillatory;

- 8= ’,zjr’,zz is finite! Thus, there is a finite probability that the barrier will reflect back the electron, causing

it to turn back to the left.

e If £ < V5,

- ko = M{%) is imaginary;
- the wavefunction declines exponentially for z > 0.

- & = 725 > 050 there is a non-zero probability for the electron to penetrate the barrier!
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Figure 3: An electron approaching a finite-width potential barrier.

3.3 Tunneling

Consider an electron approaching the potential barrier of finite width shown in figure 3 The wavefunction will be
the same as the one we found for a free electron for x < 0 and for x > W. For 0 < & < W, the wavefunction will be
similar to 7 in the previous example. Thus,

Ayetk® L A _emhr  Yr <0
Y(x) = Bye®® + B e o<z <W
Cyeh® 4 C_e~ike Ve > W

where ik = V2mE and hks = \/2m(E — V3).
Again, we can limit ourselves to the case of an electron approaching the barrier from the left, so that C_ = 0.

Rather than proceeding to match the wave-functions and its derivative at + = 0 and z = W to determine the relation

between coefficients explicitly , we shall be happy by expressing the result in terms of the transmission coefficient,

defined as

|G [

T= 0

For £ > V5,

S — (1)

V2
1+ vy 52

where S = sin(koW). Notice that this equals unity for any barrier width for which koW = nn, where n is any

integer. For the case in which E' < V5,
1
T = TV )
L+ 5i=55h
where S = sinh(ikoW'). Wave-functions for both cases are shown in figure 4. It can be observed that an electron
with a an energy lower than V; have a finite probability of penetrating the barrier.

3.4 The Quantum Well

Another problem of practical interest is the quantum well, shown in figure 5 for the one dimensional case. It is
convenient in this case to express the imaginary exponentials in terms of sinusoids and chose wave-functions of the
form

A1e** 4+ Bie™**® Ve < 0
Y(x) = Agsin(kz) + Bocos(kx) YO<z <W
AQSQI —+ Bge_(” Yo > W
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Figure 4: Wavefunction shape for the tunneling example.
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Figure 5: A one-dimensional quantum well.



where

and

Notice that if &/ > V; then alpha is imaginary and the corresponding exponential terms in the wavefunction display
oscillations that extend to infinity. In the other hand, if E' < V; we expect the wavefunction to decay as it penetrates

the barrier, an to vanish far from it. This behavior requires that B; = A; = 0.
The resulting wavefunction,

Aie®® Ve <0
P(x) =< Agsin(kx) + Bocos(kxr) Y0<ax<W
Bgyemo® Vo > W

must satisfy the continuity boundary conditions at z = 0 and . = W: ¢(0—) = ¢(0+), p(W—) = p(W+), %(0—) =

% (0+), and % (W-) = % (W+). Evaluation of these conditions into the wavefunction yield

By = ﬁAo
a
Agsin(kW) + Bocos(kW) = Bae W
k (Agcos(kW) — Bosin(kW)) = —aBae™ W
Solving equation 5 for Bs, substituting into eq. 6 and rearranging yields
Ag (kcos(EW) + asin(kW)) — By (ksin(kW) — acos(kW)) =0
which, after eliminating Ay and By by using eqs. 3 and 4 can be expressed as

2k

®)

4)

©)
(6)

)

Since Vi and W are constants, this is a single-variable equation in E. It is, however, convenient to re-write it in

terms of a normalized energy £ = E/V;. Notice that

_ V2mE _ W\/szl \/gz War/E
1

EW
h

where a = Y 27;‘/1 ,and that

2%ka  2EQ—¢)

E2—a2  26-1

Equation 7 thus becomes

tan(War/€) = %

-1

The following observations can be made about this result:

e The tangent of an angle 6 increases from 0 at # = 0 to +-00 at § = 7/2; it then jumps discontinuously to —oco

and increases again to 0 at § = w. This behavior repeats with a period .

e The function in the right-hand side of the above expression is compared to the tangent on the left-hand side
on figure 6 for the case in which Wa = 4x. It can be observed that the two sides of the above expression
intercept at four different points. Thus there are four energy levels for which the particle is confined to the

well (0 < E < W).



Figure 6: Comparison of the two functions in the result obtained for the quantum well example.
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Figure 7: Potential due to a one-dimensional Crystal lattice. The distance between ion coresis a .

4 Energy Bands

When a particle is subject to a periodic potential, quantum mechanics predicts that the particle’s energy is not
arbitrary, but must be within one of several continuous ranges of allowable energies. In a crystal, these ranges are
called allowable energy bands and are separated by energy gaps. They give place to the electronic structure of the crystal
and determine its chemical and electrical properties.

The determination of the electronic structure of a three-dimensional solid is a complex exercise that is beyond
the scope of our discussion here. The book by Harrison [1] provides a relatively friendly introduction to the subject.
Our discussion will be limited to a simplified one-dimensional model in which electrons are subject to the potential
produced by fixed ions. These ions are arranged in a periodic lattice like the one shown in figure 7, and consist of
the atomic nuclei and tightly-bound electrons.

Some of the simplifying assumptions that we will make are:

o The effects of lattice defects and atomic-core vibrations are considered as second-order corrections to our
analysis.

e Electron-electron interaction is neglected.
e Atomic cores extend from z = 0 to x = (N — 1)a where N is the number of atoms in the crystal.
o To avoid the complexity of considering the potential at the solid’s surfaces, we shall assume a ring of atoms,
with the last atom being followed by the first one.
4.1 Bloch Theorem

The quantum mechanical analysis of systems that involve periodic potentials is greatly simplified by the use of the
Bloch Theorem:

Theorem 1 For a periodic potential U(x) such that U(x + a) = U(x), the solutions to Schrdinger’s Equation consist of
wave-functions that obey

(o +a) = ()
This is equivalent to

(x) = e u(z)

where u(x) is also periodic with period a, i.e. u(x + a) = u(x).

10
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Figure 8: Potential used in the Kronig-Penney Model.

The last statement can be seen to result from the first by direct substitution,

Y(x+a) = eFTTVy(z+a)
— eikzeikau(x)
= ey(a)
Notice that our assumption of a ring-shaped lattice imposes restrictions in the values that k£ can assume. To see
this, consider that for the N-atom lattice with inter-atomic distance a,

() = (@ + N x a) = V()

Thus _
elkNa -1

and
27
~ Na
where n assumes the integer values 0, +1,+2, ... £ N/2.

4.2 Kronig-Penney Model

The complexity of the potential shown in 7 prevent us from obtaining an algebraic solution to Schrdinger’s Equa-
tion. An algebraic solution can be obtained if this lattice potential is replaced by the one shown in figure 8. Albeit
highly unrealistic, the use of this potential is standard practice in introductory solid state courses and provides us
with valuable insight into the nature of the real problem. It is known as the Kronig-Penney Model.

For this potential, for the segments in which U = 0, the time-independent Schrdinger Equation can be written

as 2
Y9
= TS
where o = vV2mE/h. If U = V;, the equation becomes
PP s
-z -0
17 + 3%

where 3 = \/2m(FE — Vi) /h. Notice that 3 is imaginary if £ < V;.
If we assume wave-functions of the form

| Apsin(azx) + Bocos(ax) Y0<z <a
V(w) = Aysin(Bx) + Bieos(fzr) Y—-b<ax <0

11



which repeats itself around each lattice point.
The requirements imposed on these equations can be expressed as

e ¢ and dip/dx must be continuous, and
o the Bloch Theorem must be satisfied.

Applying these requirements to the previously shown ) yields:
e For ¢(0—) = ¢(0+):

B1 =By
for 22(0—) = 2£(0+):
BA1L = ady
> A =24
1 — B 0
e For ¢(a—) = @0y (—b4):
W(a—) = Agsin(aa)+ Bycos(aa)

@) g ()
ek at0) (A sin(f x —b)

+Bjcos(B x —b))

= T (_ A sin(Bb) + Bcos(6b))

e for Z—f(a—) = eik(““’)%(—b—&—):

%(a—) = «a(Apcos(aa) — Bysin(aa))
(a0 3( A} cos(Bb) + By sin(3b)

Rearranging and substituting the first two results into the last two, we obtain the following equations
. a .
Ao <szn(aa) + Bszn(ﬂb))

+Bo (cos(aa) - eik(“H’)cos(ﬁb)) =0

Ay (acos(aa) — aetklat?) cos(ﬁb))
+By (—asin(aa) - ﬂeik(a%)sin(ﬂb)) =0
The requirement for a non-trivial solution is that the determinant of the quantities inside parenthesis vanish, or that
(sin(aa) + %sin(ﬁb))
X (—asin(aa) - ,Beik(‘”b)sin(ﬁb))
= (cos(aa) - eik(‘”b)cos(ﬂb))

X (acos(aa) - aeik(a%)cos(ﬂb))

INotice that because 3 is imaginary if £ < Vi, and

ei0+67i6

cos) = ——
2

0 —10
. e’ —e

sinf = ——
21

in that case the trigonometric functions will become hyperbolic in the last equation.

12



This can be rearranged to get

Bt oik(atb)
B
420+ cos(aa)cos(b) = (1 + ei%(‘”b))

sin(aa)sin(Bb)

—ik(

which, after multiplying by s=e~*#(*) and using the identity cosf = £+ yields

62+a2

cos(aa)cos(fb) — S

sin(aa)sin(Bb) = cos (k(a + b)) (8)

4.3 Discussion

Equation 8 can be considered the result of the analysis using the Kronig-Penney model. To understand its im-

plications it is convenient to express it in terms of a normalized energy ¢ = E/V;. Defining ap = Y21 such
that

o \/2;LnE :ao\/g
. ¢2m<§—vl) _ \/2mvl<§/vl D _ T

we can express equation 8 as

cos (k(a + b)) = cos(apar/€)cos(aph /€ — 1)

1-2¢ .
_msm(aoa\/g)sm(aob\/f -1)

Recall that, because we are considering a ring of atoms with period a + b, k = % where n is an integer between

+N/2. Since this is a real quantity
0 <cos(k(a+d)) <1

for all the allowed values of k. Thus, the energy levels for which the right-hand side of the above equation is in
this range satisfy Schrdinger Equation and are therefore allowed. These energies form the energy bands of the solid.
The range of energies that do not satisfy this criterion form the forbidden gaps between the bands. These bands are

shown as boxes in figure 9 for the specific case in whicha = b = .

4.4 Carrier Effective Mass

In our discussion of the free electron wavefunction, it was said that to limit the existence of a particle to some region
in space a wavepacket had to be constructed by superimposing wavefunctions with different energies. Wave theory
describes the motion of a packet of electromagnetic waves in terms of a dispersion relation that defines the group
velocity of the packet,
_dw
YTk
To apply the same concept to wavepackets, the angular frequency w must be replaced by its quantum mechanical
equivalent, E// to obtain that
_1dE
"7 R dk
If an external force is applied to the packet such that work is done,

1dE F
which implies that
dk
F=h—
dt

13
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Figure 9: Result from the analysis of a periodic potential represented by the Kronig-Penney model fora = b = -.
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Figure 10: First Brillouin zone for materials crystalilizing in the diamond and zincblende lattices.

In the other hand,
dvg _1d (dE\ _1dEdk
dt  hdt \dk) hdk% dt
is the acceleration of the wavepacket. Solving for %%, substituting into our previous expression for F, we get
1 dv
F=—"_"9
FEND)
e U

Recalling that force equals mass times acceleration and taking the group velocitys rate of change as the acceleration,
we identify the particles effective mass as
. 1dFE
T Rk

Brillouin zone: ranges of k associated with a given energy band.

In three dimensions, the Block wavenumber becomes a vector and the Brillouin zones become volumes.

I': identifies the zone center (k = 0)

X: denotes the zone end along a < 100 > direction

L: denotes the zone end along a < 111 > direction

15
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Figure 11: Electronic structure of 5i, Ge and GaAs.

Effective Mass Ge Si GaAs
my /mo 1.588 | 0.9163 -
my/mo 0.08152 | 0.1905 -
mk/mo - - 0.067

m}, /mo 0.347 0.537 | 0.51
mj, /mo 0.0429 | 0.153 | 0.082
mlk,/mo 0.077 0.234 | 0.154

Table 1: Electron and hole effective masses. The meaning of the subscripts is: l1=longitudinal, t=transversal, e=?,
hh=heavy-hole, lh=light-hole, and so=split-off. Numbers are in reference to my, the electron rest mass.
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Figure 12: Description of the Miller indeces for the simple cubic structure: (a) directions, (b) (100) an (110) planes,

and (c) two parallel (111) planes.
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Figure 1.5 (a) Diamond lattice unit cell. (b) Zincblende lattice unit cell (GaAs used for
illustration).

Figure 13: Diamond and Zincblende unit cells. While the diamond lattice is found in Silicon and Germanium
crystals, GaAs adopts the Zincblende structure.

Ge 8i _ GaAs

Figure 14: Representation of the constant energy surfaces near the bottom of the conduction band.
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Figure 15: Triangular barrier discussed in problem 2.

5 Homework

1.
2.

Derive equations 1 and 2 from the wavefunction given in the text.
For the triangular potential barrier shown in figure 15

(a) Assuming that the wavefunction will have different forms for 0 < z < g and for z < 0 or z > a, write
down Schrdingers equation for the specified problem. Let k = @

(b) Show that the specified wavefunctions are indeed a solution to Schrdingers equation.

(c) Indicate the boundary conditions that must be employed to solve the problem.

(d) Derive the set of simultaneous equations that must be solved.

(e) (optional) Find an expression for the energy states that correspond to £ < V.

6 Further Reading

1.

I extensively used the following two books to prepare this document:

Advanced Semiconductor Fundamentals, by Robert F. Pierret, Second Edition, Modular Series on Solid State Devices,
vol. VI, Prentice Hall, 2003.

Solid State and Semiconductor Physics, John P. McKelvey, Robert E. Krieger Publishing Company, Malabar,
Florida, 1966.

. It you are interested in applications of quantum theory to electronic devices, you can consult:

Quantum Phenomena, by Supriyo Datta First Edition, Modular Series on Solid State Devices, vol. VIII, Prentice
Hall, 1989.

. There are many books that offer a more complete introduction to Quantum Mechanics. One of them is:

Modern Physics and Quantum Mechanics, by Elmer E. Anderson, W. B. Saunders Co., Phil., PA, 1971.

. Figure 1 was taken from the book Devices for Integrated Circuits, by H. Craig Casey, jr., John Wiley and Sons,

1999.

. The following book offers an introduction to electronic band calculations using pseudo-potentials, written by

a leading researcher in the field.

Electronic Structure and the properties of Solids: The Physics of the Chemical Bond, by Walter A. Harrison, Dover
Publications, 1989.
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6. The following Internet link gives you access to what appear to be a draft for a whole book on semiconductor
devices. It includes chapters about Quantum Mechanics and energy bands.

http:/ /ece-www.colorado.edu/ bart/book/

7. Check this one out for an interactive applet demonstrating the Kronig-Penney model predictions:
http:/ /www.benfold.com/sse/kp.html
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