
7/9/2014

1

MSP430 Assembly Programming

Programming Levels

• Machine language
– Description of instructions in terms of 0’s and 1’s. This

is the model for the actual contents in program
memory

– Normally presented in Hex Notation.

• Assembly language
– Machine language in human-readable form. Allows

better control of program

• High level language
– Preferred by most programmers because of its English

like syntaxis and notation.

7/9/2014

2

Example: Blinking LED Program

 Objective: blink led by
 toggling of voltage levels

Programming Machine Language

1

2

3

4

5

6

7

8

1:
2:
3:
4:
5:
6:
7:
8:

7/9/2014

3

Programming Assembly Language

There is a one-to-one correspondence between machine language
 and assembly language instructions

MSP430 Machine language
structure (1/3)

• Length of One, two or three words:

– Instruction word

– Instruction word - Source Info – Destination Info

– Instruction word – (Source or Dest) Info

• 2 operand instructions with source and destination

• 1 operand instructions with dest or source

• 0 operand instruction: Only one: RETI return from
interrupt

• JUmps

7/9/2014

4

MSP430 Machine language
structure (2/3)

Two operand instructions (most significant nibble 4 to F)

Single operand instruction (most sign. Nibble 1; reti = 1300)

MSP430 Machine language
structure (3/3)

Jumps: Most significant nibble is 2 o3 ; eight jumps

OPCODE = 001

Eight conditions for C: 000 ….. 111

Largest jump: +- 2^10 bytes.

7/9/2014

5

Basic Structure of MSP430
Assembly instruction (1/3)

• Mnemonics source, destination

– (For 2 operand instructions)

• Mnemonics Operand

– (For 1 operand instructions or jumps)

• Mnemonics

– For instructions reti or 0 operand emulated instructions

• .b and .w appended to mnemonics differentiate
operand size. Default .w when none

– mov.b r4, r5; mov.w r4,r5 = mov r4,r5

Basic Structure of MSP430 Assembly
instruction: jump operands (2/3)

• In interpreters or one-pass assemblers, the
jump operand is the number of bytes that
must be added to current PC (pointing to next
address).

– Signed 11-bit integer.

• In two-pass assembler, it is an even address or
the symbolic label name given to the address.

7/9/2014

6

Basic Structure of MSP430 Assembly
instruction: general cases (3/3)

• Operands are written with a syntax associated to the
addressing mode

• Operands can be
– Register names

– Integers

• Integers can be:
– Base ten integers (no suffix or prefix)

– Base 2 (suffix b or B)

– Base 16 (suffix h or H, or prefix 0x; it cannot begin with a letter)

– Base 8 (suffix q or Q)

MSP430 Addressing modes

Mode Syntax DATA location Source Destination

Immediate #X Data is X OK X

Register Rn Is in Rn OK OK

Direct X at address X OK OK

Absolute &X at address X OK OK

Indexed X(Rn) At address Rn + X OK OK

Indirect @Rn At address Rn OK X

Indirect with
autoincrement

@Rn+

At address Rn. In
addition Rn
incremented by data
size after execution

OK X

M
E

M
O

R
Y

L
O

C
A

T
IO

N
S

Notes: Rn is a register name; X is an integer number (valid constant)

N
o
n

 M
E

M
O

R
Y

L
O

C
A

T
IO

N
S

7/9/2014

7

ASSEMBLY PROCESS

Assembly process (Two pass)

Source File

 *.asm

 Assembler

Object file

Other text files

(headers, .asm, etc)

 Linker

 Execute

file

Other object files

Other files of interest

The linker uploads

 data and execute file in

 memory, at addresses

 specified by assembler

 using directives.

7/9/2014

8

Assembly process (1/2): Source
and assembly

• To assembly is to convert assembly language to machine
language.

• To dissasembly goes from machine to assembly

• Source file: text file containing assembly instructions and
directives
– Directive: ‘instruction’ for assembler and linker, not loaded into

program memory

– Source statement: each line in the source file

• Object file: file with machine language instructions that
results from assembler

• Execute file: machine language file loaded into memory. It
results from linker

Assembly process (2/2) :
Assembler

• Interpreter: assemblies one line at a time

– Line interpreter: only one line

• Assembler: Usually reads the source fi

• Two-pass assemblers: allows use of defined
constants, labels, macros, comments, etc.

– Read the source once to decode user defined vocabulary

• Format of source statetment in two-pass
assembler:

– [Label] [mnemonics] [operands] [;comment]

7/9/2014

9

Important Facts

• Source statement: A line in the source file

• Source fields (may consist of only one)

Label Mnemonics Operand(s) ;Comment

• Label always goes on first column

• Comment always follows a semicolon (;)

• On the first column, always a label, blank, or a
comment, nothing else

Directives and instructions

• Instructions are for CPU, loaded and executed

– Always the same, irrespectively of the assembler

• Directives: commands for Assembler

– Serve to manage memory, create macros, define
data, etc.

• The last source statement is the directive END

• In IAR, traditionally directives are in capital
case (END, DB, DW, etc), mnemonic
instructions in small case

7/9/2014

10

Important Directives and points

ORG <address>:

Tells the linker the

 address where to start placing

 the data/instruction that follow.

DW: Tells the assembler

 that the data following is

 16-bit size

Reset vector: address of first

 instruction to be fetched.

 (In this ex. Label ResVector)

OTHER GENERAL CONCEPTS

7/9/2014

11

Constant generators registers R3
and R2 in MSP430

• For certain immediate mode source values,
behavior is similar to register mode by using a
constant generator register.

• Values #0, #1, #2, #-1 are generated by R3 .

• Value #4 is automatically generated by R2

• Absolute value 0 in 0(Rn) is generated by R2

• Change is transparent to user; must be taken into
account for timing and instruction size (see ex. 4.4)

Constant generator examples

• Language machine for mov #3, R5 is 4035 0003, two cycles
– Instruction word 4035:

• most significan nibble 4 for mov, least significant 5 for R5

• 03 indicates immediate mode source, data being the number that
follows (0003),

• Language machine for mov #2, R5 is 4325
– 3-2: immediate value with R3 generating #2 in word instruction (0-0-

1-0) in nibble 2

• Language machine for mov.b #2,R5 is 4365
– 3-6: immediate value with R3 generating 2 in byte instruction (0-1-1-

0) in nibble 6

7/9/2014

12

Byte size Operand (1/2)

• For memory data, instruction works as
required

– Examples with [0204] = 3A2F, [0306] = ABCD

• That is, [0204]=2F, [0205]=3A, [0306]=CD, [0307]=AB

1. mov &0x204, 0x0306 yields [0306] = 3A2F

This was a word size operand

2. mov.b &0x204,&0x0306 yields [0306] = AB2F

3. mov.b &0x205, 0x0306 yields [0306] = AB3A

4. add.b 0X0307,&0205h yields [0204]= ABCD

Byte size operands (2/2)

• Working in register mode:
– When in source, take LSB only.

– When in Destination: result goes to LSB, MSB = 00

• Examples with initial R5 = CA50, R6= 2345,
[0204]=ABCD

– mov.b R5, 0x0204 yields [0204] = AB50

– mov.b R5, R6 yields R6 = 0050

– add.b &0x0205, R5 yields R5 = 00FB

7/9/2014

13

INSTRUCTIONS

MSP430 Instruction Set

• 27 Core Instructions and 24 emulated instructions

• Core instructions are the machine native language
instructions, supported by hardware.

• Emulated instructions are “macros” translated
automatically by the assembler to an equivalent core
instruction

– Defined to make programming easier to read and write

– Already standard.

7/9/2014

14

Data transfer instructions

• mov src, dest (dest  src)
– mov src,dest = mov.w src, dest; mov.b src, dest

• push src (1. SP SP-2; 2. (SP)  src)
– push.b only pushes the byte, but moves SP two places.

• pop dest = mov @SP+, dest
– This is an emulated instruction

– pop.b dest moves only byte, but SP SP+2 anyway

• Verify the your understanding by checking the following
instructions in your assembler.
– push #0xABCD, push.b #0xCD, pop r10, pop.b r11

• swpb src Swaps low and most significant bytes of word src
– No byte operation allowed

Remarks on Push and Pop (1/3)

• To recover an original item, the number of push
operations must equal the number of pop operations

– In MSP430 and orthogonal mcu’s, we can “simulate” a pop
or push adjustment by manipulating SP instead.

• Example: add #2,SP to get the update of a pop without actually
doing a pop.

• When just storing temporarily, for later retrieve, be
careful with number and order of stack operations

– Pop in reverse order

– Never start with a pop because you get garbage.

7/9/2014

15

Some Remarks on push and pop (2/3)

• Correct

 push R6

 push R5

 `` other instructions

 pop R5

 pop R6

• ‘Pop’ the last item you
‘pushed’

• Incorrect (be careful)

 push R6

 push R5

 `` other instructions

 pop R6

 pop R5

• But you can define
macro swp R5,R6
this way! Ha ha

Remarks on stack management

• Push and Pop operations are managed with
the stack pointer SP

• Once a data is popped out, it cannot be
retrieved with a stack operation

– Use mov for this purpose

• You can work with items in stack the same
way you work with memory.

7/9/2014

16

Arithmetic Instructions

*** Affect flags ***

Normal Flag effects for addition
and subtraction

• C = 0 if not carry; C= 1 if carry
– For addition: C=1 means a carry is generated

– For subtraction: C=0 means a borrow is needed;

• Z=0 if destination is not zero, Z=1 if result is zero (cleared)

• N = most significant bit of destination

• V = 1 if overflow in addition or subtraction, V=0 if not
overflow
– Addition overflow if two signed integers of same sign yields a result of

different sign

– Subtraction overflow if difference between numbers of different sign
has the sign of subtrahend

7/9/2014

17

Core Addition and Subtraction
Instructions -1/4 - (.w and .b)

• add src, dest -- Add source to destination

– dest  dest + src

• addc src, dest -- Add source and carry to
destination

– dest  dest + src + Carry Flag

• sub src, dest -- Subtract source from
destination

– dest  dest + not(src) + 1

Core Addition and Subtraction
Instructions - 2/4- (.w and .b)

• subc src, dest or sbb src, dest-- Subtract
source and borrow from destination

– dest  dest + not(src) + Carry

• cmp src, dest -- Compare dest to src

– dest + not(src)+ 1, no change of operands.

• sxt dest– Sign-extend LSByte to word

– Bit(15)=Bit(14)= … = Bit(8)  Bit(7)

• Example R5 = A587 , sxt R5  R5 = FF87

• Example R6 = A577, sxt R6  R6 = 0077

7/9/2014

18

Core Addition and Subtraction (3/4):
Using Compare (cmp)

• comp src, dest is usually encoded to compare two
numbers A=dest, B=src, in order to take a decision
based on their relationship.

• Decision is made with a conditional jump.

• Conditions directly tested in MSP430 are

– (1) If A=B then…..; (2) If A B then ….

– (3) If A B then …. [for signed and unsigned]

– (5) If A< B then ….. [for signed and unsigned]

– (7) If A <0 then ….

Core Addition and Subtraction
Instructions - 3/4- (.w and .b)

• dadd src, dest Decimal addition

– Used for BCD formats

– dest  BCD addition (dest + src + Carry)

– C =1 if result is greater than 9999 for words or
99 for bytes.

– V is undefined

• Example: R5 = 1238 R6 = 7684, C=0

– dadd.w R5, R6  R6 = 8922, C=0

– dadd.b R5,R6  R6 = 0022, C=1

7/9/2014

19

Emulated arithmetic operations

• adc dest = addc #0,dest (add carry to dest)

• dadc dest = dadd #0, dest (decimal addition of
carry)

• dec dest = sub #1,dest (decrement destination)

• decd dest = sub #2,dest (decrement dest twice)

• inc dest = add #1,dest (increment destination)

• incd dest = add # 2, dest (increment dest twice)

• sbc dest = subc #0, dest (subtract borrow)

• tst dest = cmp #0, dest (Ojo C=1, V=0 always)

Logic Bitwise Instructions

And MSP430 logic bitwise
instructions

7/9/2014

20

Effects on Flags

• Flags are affected by logic operations as
follows, under otherwise indicated:

• Z=1 if destination is cleared

• Z=0 if at least one bit in destination is set

• C= Z’ (Flag C is always equal to the inverted
value of Z in these operations)

• N = most significant bit of destination

• V = 0

Core bitwise Instructions affecting
flags (1/2)

1. and src, dest realizes dest src .and. Dest

2. xor src, dest realizes dest src .xor. Dest
a) Most common, but not exclusive, use is for inverting (toggle) selected

bits, as indicated by the mask (source)

b) Problem: show that the sequence xor r5,r6 xor r6,r5 xor r5,r6 has the
effect of swapping the contents of registers r5 and r6.

3. bit src, dest realizes src .and. dest but only affects flags

7/9/2014

21

Core bitwise Instructions affecting flags
(2/2)

• Examples starting with

 R12= 35AB = 0011 0101 1010 1011

 R15= AB96 = 1010 1011 1001 0110

and R12,R15 0010 0001 1000 0010→R15=2182 R12= 35AB

bit R12,R15  R15 = AB96, R12 = 35AB

 Flags for both cases: C=1, Z=0, N=0, V=0

 and.b R12,R15 1000 0010→R15=0082 R12 = 35AB

 bit.b R12, R15  R15 = AB96, R1=35AB

 Flags for both cases: C=1, Z=0, N=1, V=0

xor R12,R15 1001 1110 0011 1101→R15=9E3Dh C=1, Z=0, N=1, V=0

xor.b R12,R15 0011 1101→R15=003Dh C=1, Z=0, N=0, V=0

Remarks on bit instruction in
MSP430

• Since C=Z’, either the carry flag C or the zero flag C
can be used as information about condition.

• In bit src, dest C=1 (Z=0) means that at least one bit
among those tested is not 0.

• In bit #BITn, dest, where BITn is the word where all
but the n-th bit are 0, C=tested bit

– Example R15= 0110 1100 1101 1001 then

 bit #BIT14,R15 yields C=1 = bit 14;

 bit #BIT5,R15 yields C = 0 = bit 5.

7/9/2014

22

Core bitwise Instructions (2)
– not affecting flags -

4. bis src, dest realizes dest src .or. dest, :
4. Sets bits selectd with mask

5. bic src, dest realizes dest src’ .and. Dest :
5. clear bits selected with masks.

• Examples

 R12= 35ABh = 0011 0101 1010 1011, [0204] = 28 (28h)

 R15= AB96h = 1010 1011 1001 0110

 bis R12,R15 1011 1111 1011 1111→R15= BFBFh Flags: unchanged

 bic R12,R15 1000 1010 0001 0100→R15= 8A14h Flags: unchange

 bis.b R12,R15 1011 1111→R15= 00BFh Flags: unchanged

 bic.b R12,R15 0001 0100→R15=0014h Flags: unchanged

 bis.b #77, &0x204 (01001101.or 00101000 =01101101) [0204] = 6D

Emulated Logic Instructions

•Manipulating flags: • Inverting a destination

inv dest = xor #0FFFFh, dest

inv.b dest = xor.b # 0FFh, dest

Toggles (inverts) all bits in dest

 clc = bic #1,SR (C 0)

 clz = bic #2,SR (Z 0)

 cln = bic #4,SR (N 0)

 setc = bis #1,SR (C 1)

 setz = bis #2,SR (Z 1)

 setn = bis #4,SR (N 1)

7/9/2014

23

Rolls and Rotates in MSP430

Rolling (Shifting) and Rotating Data bits

• Two core instructions:

– Right rolling arithmetic: rra dest

– Right rotation through Carry: rrc dest

• Two emulated instructions

– Left rolling arithmetic: rla dest = add dest,dest

– Rotate left through carry: rlc dest = addc dest,dest

• Roll = Shift

7/9/2014

24

Right arithmetic shift or roll rra:

Word rra.w dest = rra dest Byte rra.b dest

Arithmetic Interpretation: sign Divide by two (dividend = Q*2 + r, 0=< 1

R7 = FB0Fh = 1111101100001111 = (-1265)

rra R7 1111110110000111 1 C=1 Z=0 N=1 V=0

New R7 = FD87h = > -633 -1265 = (-633)*2 +1

Right Rotation Through Carry rrc

Some Uses:

• To divide by 2 unsigned numbers by first clearing C

• 873Bh = 34619; 439Dh = 17309 34619 = 17309x2 + 1

• To extract bits from lsb to msb

• Think of other possibilities

Example: C= 0 R5 = 873B = 1000 0111 0011 1011

 rrc r5  R5 = 0100 0011 1001 1101 = 439D C=1

7/9/2014

25

Left rollings

Left rolling:

 rla dest = add dest,dest  multiply by 2 (may need carry)

Other uses: extract bits from msb to lsb

Left Rotation Through Carry

• Arithmetic Interpretation: 2x + C

•Think of other uses

7/9/2014

26

Program Flow Instructions

Do not affect flags

Jumps 1/2 (Core)

• jz/jeq label or address (jump if zero/equal)

• jnz/jneq label or address (jump if not
zero/equal)

• jc/jhe label or address (jump if carry/ higher
or equal -- for unsigned numbers)

• jnc/jlo label or address (jump if not carry/
lower-- for unsigned numbers)

7/9/2014

27

Jumps and subroutine 2/2 (Core)
• jge label or address (jump if greater or equal --

for signed numbers)

• jl label or address (jump if less -- for signed
numbers)

• jn label or address (jump if flag N=1)

• jmp label or address (unconditional jump)

• call dest

– calls subroutine;

– dest follows addressing mode conventions

• reti : return from interrupt

Emulated

• Emulated program flow

– br dest = mov dest, PC (Unconditional branch)

– ret = mov @SP+, PC (return from interrupt)

• Miscellaneous:

– dint = bic #8, SR (Disable interrupts)

– eint = bis #8, SR (Enable interrupts)

– nop = mov R3, R3 (Do nothing; one cycle
delay)

7/9/2014

28

Conditional and loop structures

Code structure

IF-THEN

7/9/2014

29

IF_ELSE

FOR-LOOPS

7/9/2014

30

WHILE LOOP

REPEAT-UNTIL LOOP

7/9/2014

31

Examples: Delay loop and iteration
loop

Example:

 mov #delay,R15

DelLoop: dec R15

 jnz DelLoop

Example: Extended delay loop

 mov #delay,R15

DelLoop: nop

 dec R15

 jnz DelLoop

