DYNAMIC & DOMINO LOGIC

INEL 4207 - Digital Electronics
Figure 15.19 (a) Basic structure of dynamic-MOS logic circuits. (b) Waveform of the clock needed to operate the dynamic logic circuit. (c) An example circuit.
Figure 15.20 Circuits for Example.

Assume $V_{DD} = 1.8\, \text{V}$, $V_t = 0.5\, \text{V}$, $\mu_n C_{ox} = 4\mu p C_{ox} = 0.3m A/V^2$, $(W/L)_n = 0.27\mu m / 0.18\mu m$ (including Q_e), $(W/L)_p = 0.54\mu m / 0.18\mu m$ (for Q_p), $C_L = 20fF$.

a) For the pre-charge operation, with Q_p’s gate at 0V and if C_L is fully discharged at $t = 0$, find the time for v_Y to rise from 10% to 90% of V_{DD}.

b) For $A = B = C = D = 1$, find t_{PHL}
Figure 15.21 (a) Charge sharing. (b) Adding a permanently turned-on transistor Q_L solves the charge sharing problem at the expense of static power dissipation.
Cascading dynamic logic gates

By the time v_{Y1} drops to V_t, C_{L2} can loose a significant amount of charge causing v_{Y2} to can be significantly reduced.

Figure 15.22 Two single-input dynamic logic gates connected in cascade. With the input A high, during the evaluation phase C_{L2} will partially discharge and the output at Y_2 will fall lower than V_{DD}, which can cause logic malfunction.
Consider the circuit as the evaluation phase begins: at \(t = 0 \), \(v_{Y1} = v_{Y2} = V_{DD} \) and \(v_\phi = v_A = V_{DD} \). \(Q_{p1} \) and \(Q_{p2} \) are cutoff and can be removed from the equivalent circuit. Replace series combinations of \(Q_1 - Q_{c1} \) and \(Q_2 - Q_{c2} \) by equivalent devices.

Consider the interval \(\Delta t \) during which \(v_{Y1} \) falls from \(V_{DD} \) to \(V_t \), at which time \(Q_{eq2} \) turns off and \(C_{L2} \) stops discharging. Assume \((W/L)_n = 4 \mu m/2 \mu m \) and \(C_{L1} = C_{L2} = 40 fF \). Assume \(V_{DD} = 5V \), \(V_{t0} = 1V \), \(\mu_n C_{ox} = 2.5 \mu p C_{ox} = 50 \mu A/V^2 \), \((W/L)_n = 4 \mu m/2 \mu m \).

Find

a) \((W/L)_{eq1} \) and \((W/L)_{eq2} \).

b) an average \(i_{D1} \), \(i_{D1,av} \), from \(i_{D1}(v_{Y1} = V_{DD}) \) and \(i_{D1}(v_{Y1} = V_t) \).

c) \(\Delta t \) using \(i_{D1,av} \)

d) \(i_{D2,av} \) obtained when \(v_{Y1} \) is halfway through its excursion (i.e. \(v_{Y1} = 3V \)).

Hint: \(Q_{eq2} \) is in saturation.

e) Use \(\Delta t \) found in (c) and \(i_{D2,av} \) to estimate the reduction in \(v_{Y2} \) and its final value.
Figure 15.23 The Domino CMOS logic gate. The circuit consists of a dynamic-MOS logic gate with a static-CMOS inverter connected to the output. During evaluation, Y either will remain low (at 0 V) or will make one 0-to-1 transition (to V_{DD}).
Figure 15.24 (a) Two single-input Domino CMOS logic gates connected in cascade. (b) Waveforms during the evaluation phase.