Performance Evaluation in Computational Grid Environments

Liang Peng, Simon See, Yueqin Jiang*, Jie Song, Appie Stoelwinder, and Hoon Kang Neo
Asia Pacific Science and Technology Center, Sun Microsystems Inc.
Nanyang Center for Supercomputing and Visualization,
*School of Electrical and Electronics Engineering,
Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
{pengliang, simon, yueqgin, songjie, appie, norman}@apstc.sun.com.sg

Abstract

Grid computing has been developed extensive in re-
cently years and is becoming an important platform for
high performance computing in scientific areas. Grid
performance evaluation is an important approach to im-
prove the performance of Grid systems and applications.
However, few work has been conducted in grid perfor-
mance evaluation due to a lot of reasons like lack of ap-
propriate grid performance metrics, complexity of the
grids, etc.

In this paper, we analyze the performance metrics
like response time and system utilization in the computa-
tional grid environment. We argue that instead of calcu-
lating the system utilization in the traditional, a concept
of relative grid utilization, which describes how close
is a single grid application performance to the perfor-
mance of the same application submitted without grid
middleware. We also discuss the utilization for the grid
systems processing a number of jobs. In our experi-
ments, we use NPB/NGB to evaluate the APSTC cluster
grid and NTU Campus Grid performance, especially the
overhead of SGE and Globus. Our results show that the
overhead of grid middleware turns to be ignorable when
the job size grows, and the characteristics of the grid
applications affect a lot on utilization of computational
grids.

Keywords: Grid computing, Performance evaluation,
Benchmarking, Response time, System utilization

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’'04)
0-7695-2138-X/04 $ 20.00 IEEE

1. Introduction

With the popularity of computational grids in scien-
tific high performance computing, it is more and more
desirable to provide widely acceptable approach to eval-
uate performance of the grid systems and applications.
Although the grid architecture/middleware has been de-
veloped extensively in recently, the existing systems are
not well understood by grid users and this is heavily be-
cause of the lack of performance evaluation results for
them.

One of the problem in grid performance evalua-
tion/benchmarking is the performance metrics. There is
no widely used performance metrics for computational
grid environment. This is due to the high complexity
and dynamism nature of the grids. In this paper, we try
to present some analysis on the grid performance metrics
(mainly the response time and the system utilization).

Benchmarking is a typical way to test and evaluate
the performance of a grid system. A grid benchmark
enables one to compare the capabilities of a grid sys-
tem to those of another system in order to find out the
features and the ways to improve it. However, cur-
rently few benchmark suites have been developed and
widely used, which results in an obstacle to better un-
derstanding and wider acceptance of the grids. NGB
(NAS Grid Benchmarks) [9] is a recently proposed Grid
benchmarks based on widely used NAS Parallel Bench-
marks. In this paper, we introduce the organization of
our Sun cluster grid and NTU (Nanyang Technological
University) Campus Grid [4], which an established and
running grid computing environment. The performance
evaluation results by using NGB is also presented. In
our experiments, We mainly focus on the turnaround

YF]',F.

COMPUTER

SOCIETY



time and CPU utilization of the cluster grid. Our results
shows that the overhead of SGE and Globus middleware
is negligible especially for bigger problem sizes. Mean-
while, the NGB results show very low resource utiliza-
tion, and this implies the traditional system utilization
may not be suitable for grids and relative grid utiliza-
tion could be a better metric.

The remainder of this paper is organized as follows:
In Section 2 we analyze some performance metrics in
computational environments; Section 3 describes the
Sun Grid Engine as a grid computing middleware. Sec-
tion 4 introduces NGB benchmark suite. The experi-
mental results are presented and analyzed in Section 5.
Some related work are introduced in Section 6 and fi-
nally we give a conclusion in Section 7.

2. Grid Performance Metrics

There are very few performance metrics particularly
defined for computational grids. In traditional paral-
lel computing, response time (or turnaround time) is
a major concern of user, and system utilization is an
important metric from the perspective of system en-
gineers/administrators. In computational grid environ-
ment, although sometimes users submit job to grid be-
cause of the reasons other than speedup, response time
still remains an important factor in consideration.

For a single grid job, response time can be defined as
Tend — Tsubmit, where Ty g is the time when the job is
finished, and T'sy ¢ 1S the time when the job is submit-
ted to the system. For a number of jobs, sometimes we
also use average response time, which can be calculated
as X(Tena — Tsubmit)/ N, where N is the total number
of submitted jobs.

In traditional parallel computing, the system utiliza-
tion can be computed as the ratio of the achieved speed
to the peak speed of a given computer system. With
this definition, the system utilization is usually very low
(typically ranging from 4% to 20% ( [13]). This concept
can also be applied to computational grid environment,
but it can be expected that the system utilization could
be even lower. Therefore, for single grid job, we find
it more appropriate to define the relative grid utilization
based on the traditional parallel system resource utiliza-
tion: (system utilization of grid job submission)/(system
utilization of parallel job submission). This concept re-
veals how close is the grid application to parallel exe-
cution on the same machines, instead of calculate the
“absolute” value of utilization. Since applications run-

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’'04)
0-7695-2138-X/04 $ 20.00 IEEE

ning on computation grid environment is supposed to
have more overhead and is expected to be slower, we
can treat the corresponding parallel system as the upper
bound of the application.

Another way to measure grid utilization is calculating
the overall ratio of consumed CPU cycles and the avail-
able computational resources defined in [16], i.e. the
grid efficiency. With the consideration of multiple com-
ponents within single grid job, an improved definition of
grid utilization is presented as follows:

U Yizjobs Xj=C PUs (Tendi,j — Tsubmiti,j) X P;
G =

(1)
where T4 is the time when the job is finished, and 75,
is the time when the job is submitted, P; is the speed of
jth CPU where component j is running, and Ny, is the
total number of CPUs on kth server.

3. Cluster Grid and NTU Campus Grid

The cluster grids are the simplest form of a grid
which can be used to compose higher logical level en-
terprise/Campus grids and global grids. The key bene-
fit of cluster grid architecture is to maximize the use of
compute resource and increase throughput for user jobs.

The cluster grid architecture can be divided into three
non-hierarchical logical tiers: Access tier, Management
tier, and Compute Tier.

The access layer provides the means to access the
cluster grid for job submission, administration and so
on. The management layer provides the major cluster
grid services such as job management, monitoring, NFS,
etc. The computer layer provides the compute power for
the cluster grid, and supports the runtime environments
for user applications.

The performance of higher level grids largely relies
on that of lower level grids. In order to evaluate the per-
formance of the enterprise/campus level grids, classify-
ing performance of cluster grid is necessary and mean-
ingful.

The cluster grid in APSTC is a part of NTU cam-
pus grid, which consists of multiple cluster grids running
SGE/Globus at different schools and the whole campus
grid is managed by ClearingHouse. The cluster grid of
APSTC is illustrated in Figure 1. APSTC cluster grid
consists of two Sun Fire V880 servers (totally twelve
CPUs) with Sun Grid Engine (SGE). One server is the
master host, and both servers are submission host and
execution host.

(Tendlastjob - Tsubfirstjob) X Yg=servers Nk X Py

YF]',F.

COMPUTER
SOCIETY



To NTU Campus Grid

...................................................................

APSTC Cluster Grid

Sun Blade
150 System

Login Host Access tier

SGE submit Host

Management

Sun Fire d
TEaLEEE

V880 server

Compute Tier
SGE master

Sun Fire
V880 server

4 CPUs

8 CPUs

Figure 1. The APSTC Cluster Grid Organization.

The SGE distributed resource management (DRM)
software is the core component of the Sun Cluster Grid
software stack. It provides the DRM functions such
as batch queuing, load balancing, job accounting statis-
tics, user-specifiable resources, suspending and resum-
ing jobs, and cluster-wide resources. The procedure of
job flow in Sun Grid Engine is illustrated in Figure 2.
In this job flow, each step may result in extra overhead

Eﬂaster host
(2)Schedule

x:}“‘.- Dispatch

Submit (1) (

Submit

host Execution

hasts

Figure 2. The job flow in SGE.

in job submission and execution. In order to give a brief
overview of the overhead as well as the resource utiliza-

tion, we use NGB to do a performance evaluation on our
cluster grid.

The cluster grids in the NTU campus grid can run
SGE or Globus, or both. In our scenario, when jobs are
submitted from NTU campus grid ClearingHouse por-
tal, it is forwarded to the local Globus gatekeeper and
handled by Globus. Another approach is to integrate
Globus with local SGE. But we do not use this mixed
approach in our experiments in order to separate their
individual effects on performance. A demonstration is
shown in Figure 3. In this senario, when jobs are sub-
mitted from ClearingHouse client, it is sent to the Clear-
ingHouse Server. The ClearingHouse server will record
some relative information in local database and then for-
ward the job request to the user-selected cluster grid,
which is handled by its local Globus gatekeeper. There
will be some procedure like user account mapping, CA
checking, etc. Finally the job will be executed there.

4. NAS Grid/Parallel Benchmarks
4.1 Grid Benchmarking

A benchmark is a performance testing program that
is supposed to capture processing and data movement
characteristics of a class of applications. In performance
benchmarking, selection of benchmark suite is critical.
The benchmark suite should be able to test the affect-
ing factors in the system and results should reveal the
characteristics of the systems reasonably.

Strictly speaking, there is no complete grid bench-
marks existing for grid platforms like the parallel bench-
marks for parallel computing systems, mainly because
of the inherent complexity of the grids. Grid bench-
marks should take into account more factors which are
related to the grid environment but are not major consid-
erations in traditional high performance computing sys-
tem. For example, the grid benchmark designers may
need to think about the various types of grid jobs which
may possibly consists of multiple applications running
over wide area networks.

4.2 NAS Grid Benchmarks

NGB (NAS Grid Benchmarks) [9] is a recently pro-
posed benchmark suite for grid computing. It is evolved
from NPB (NAS Parallel Benchmarks) [6], which was
designed and widely used for performance benchmark-
ing on parallel computing systems.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’04)
0-7695-2138-X/04 $ 20.00 IEEE



ClearingHouse

Client
L P
- record '
ClearingHouse ———PHatabase |+
To outer Server '
computing retrieve :
resources @ _-— .~ Z  f e e e e '

! Genome i : i + + Globus E : '

e | e ol GG RRRL L s

1of Singapore | P p P . . Fate €eper . :

T — N ! iteeeen----...2 | Account Mapping E L

Cluster Cluster i Cluster : : Cluster i

Grid Grid ; Grid [ CA Checking ; Grid :

5 | JOb Execution i ]

E Cluster ;

' Grid '

Campus Grid
Figure 3. The job flow in NTU Campus Grid (with ClearingHouse and Globus).
In NPB, the are eight benchmarks (i.e. BT, CG, EP, eral times.
FT, IS, LU, MG, SP) on behalf of various type of scien- ] o o )

tific computation (for more details please refer to [6]). e Visualization Pipeline (VP) consists of three NPB
In current NGB, there are four problems representing programs: BT, MG, and FT, Whlc}? f‘ﬂﬁu the role of
four different typical classes of grid applications: flow solver, post processor, and visualization mod-
ule respectively. This triplet simulates a logically

e Embarrassingly Distributed (ED) represents a class pipelined process.
of applications which execute same program for
multiple times with different parameters. In ED, ¢ Mixed Bag (MB) is similar to VP except that it in-
the SP program, which is selected from NPB, is ex- troduces asymmetry. In MB, different volumes of
ecuted for several times depending on the problem data are transferred between different tasks and the
size. There is no data exchange between each exe- workload of some tasks may be more than the oth-
cution of SP, so it is very loosely coupled. ers.

e Helical Chain (HC) stands for long chains of pro- NGB contains computation-intensive programs and it
cesses which are executed repeatedly. Three pro- mainly addresses grid computing system’s ability to ex-
grams, BT, SP, and LU, are selected from NPB. ecute distributed communicating processes. It does not
During execution, the output of one program is fed specify how to implement or choose other grid comput-
into another, and these procedure repeats for sev- ing components such as scheduling, grid resource allo-

YF]',F.

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’04) COMPUTER
0-7695-2138-X/04 $ 20.00 IEEE SOCIETY



cation, security, etc.

5. Experimental Results
5.1 Testbed and Workloads

Our benchmarking is performed on APSTC cluster
grid, which consists of a four UltraSPARC III CPU
(900MHz, 8GB memory) node (hostname: sinope) and
an eight UltraSPARC III CPU (750MHz, 32GB Mem-
ory) node (hostname: ananke). They all run Solaris 9
with Sun Grid Engine 5.3p4 and Globus toolkit 2.4. All
NGB benchmarks are compiled with JDK1.4.

The jobs can be either submitted to the cluster grid
locally, or submitted from the NTU campus grid Clear-
ingHouse portal.

We use NPB programs to simulate the workload of
NTU campus grid. Specifically, we use all the eight
benchmarks in NPB suit with problem sizes S, W, A,
and B. The jobs that require relatively short CPU time (S
size) take 10% of the total number of jobs; the jobs that
require relative long CPU time (B size) also take 10%
of the total number of jobs. The rest 80% of the jobs
evenly consists of W and A size jobs. We submit totally
100 jobs in each simulation. The jobs distribution is the
Poisson distribution, and the arrival rate is 0.04 (i.e. in
average one job is submitted every 25 seconds).

5.2 Turnaround Time

First we measure the turnaround time and grid mid-
dleware overhead for the single NGB benchmarking
programs. Table 1 gives the timing results of execution
on sinope server (i.e. the master host). The percentage
of the overhead are shown in Figure 4. When the prob-
lem size is relatively small, the SGE overhead is signif-
icant comparing with the execution time (5.47 seconds
out of 15.73 seconds for ED/S, 10.67 out of 23.46 sec-
onds for HC/S, 7.71 out of 21.14 seconds for MB/S, and
9.79 out of 26.73 seconds for VP/S). However, generally
this overhead is not greatly increased when the problem
size is increased. For the bigger size problem (W size)
execution on the same server, in which case the system
overhead only takes a very small percentages (11.84 sec-
onds out of 674 seconds for ED/W, 11.76 seconds out of
1031 seconds for HC/W, 14.13 seconds out of 907 sec-
onds for MB/W, and 4.61 seconds out of 148 seconds
for VP/W). For the bigger size problem (A size for ED
and HC) execution on the same server, in which case the

SGE overhead with NGB
0a

0.45 .
0.4

035 \
03 —a—HC
02 ME

02 Ve
015
01

0.05

——ED

Overhead Percentage

Problem Size

Figure 4. The percentage of grid middleware over-
head with NGB (on one server).

system overhead takes even smaller percentages (14.79
seconds out of 3996 seconds for ED/A, and 34.11 sec-
onds out of 7213 seconds for HC/A).

We also evaluate the system by utilizing both of the
two servers, in which case the number of CPUs is larger
than the number of tasks. Table 2 shows the results of
execution with S problem The percentage of the over-
head are shown in Figure 5. We can see that the sit-
uation of system overhead on two servers are roughly
the same as that on one server: the overhead of small
problem size is significant, but when the problem size
increases, it turns to be negligible since the overall ex-
ecution time increase much faster. Depending on the
characteristics of particular benchmarks, the increase of
the number of CPU may have different effects on the ex-
ecution time. We found that all benchmarks except ED
run for more time on two servers than on one server. ED
takes less time to finish on two servers. This is mainly
because ED represents for very loosely coupled appli-
cations, and there is very few or even no data commu-
nication between the tasks. When the number of CPUs
increased to be larger than the number of tasks, the ex-
ecution time decreases. However, for HC, MB, and VP,
there are data communications between tasks. Some of
their tasks can run in parallel and some others depend on
the others. In this case, the network bandwidth limit the
execution speed. Figure 4 shows that the percentages of
the overhead in turnaround time decrease very fast when
the problem sizes increase.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’'04)
0-7695-2138-X/04 $ 20.00 IEEE



|Benchmarks and Problems size| ED | HC | MB | VP |

S (w/o middleware) 10.259 12.791 | 13.437 | 16.941
S (with SGE) 15.733 23.459 | 21.144 | 26.734
W (w/o middleware) 662 1019 892 143
W (with SGE) 674 1031 907 148
A (w/o middleware) 3981.49 | 7179.74 - -
A (with SGE) 3996.28 | 7213.85 - -

Table 1. Timing of NGB benchmarks on single server (in Seconds).

| Benchmarks and Problems size | ED | HC | MB | VP |
S (w/o middleware) 7.192 15.367 18.34 19.526
S (with SGE) 13.194 22.984 26.162 | 25.532
S (with Globus) 23.24 31.36 33.39 33.31
W (w/o middleware) 358.584 | 1301.084 | 1272.787 | 181.99
W (with SGE) 374 1306 1283 197
W (with Globus) 390 1316 1290 203
A (w/o middleware) 2304.29 | 9197.77 - -
A (with SGE) 2302 9240 - -

Table 2. Timing of NGB benchmarks on two servers (in Seconds).

The SGE overhead and Globus overhead are also
compared with the benchmarks running on both of the
two servers Figure 5. The globus has more overhead for

all cases: With S size problem, the SGE overheads are
SGE and Globus overhead with NGB 6.00, 7.62, 7.82, and 6.01 seconds in comparison with
18 16.05, 15.99, 15.05, and 13.78 seconds of Globus over-
07 —+—ED (with 3GE) head for ED, HC, MB, and VP benchmarks respectively.
20 \ —a— HC (with SGE) With W size problem, the SGE overheads are about 15,
£ 0 . MB (with 5GE 4, 10, and 15 seconds in comparison with 31, 14, 17, and
E ' WP fwith SGE) 21 seconds of Globus overhead for ED, HC, MB, and
%94 ‘X —s—ED (with Globus) VP benchmarks respectively. This is partially because
803 g —4—HC (with Globus) it does more operations like account mapping, authen-
502 \\ —+—MB fwith Glohus) tication checking, MDS services, etc. However, when
¢ \>\ —— P (uith Globus) the problem size grows, the overhead of Globus also be-
01 \;*\\__. comes negligible.
0 r r

thlg’:’ﬂ Size A In order to test the performance of processing multi-
ple job submission, we use NPB benchmarks to simulate
the NTU campus grid workloads for SGE running on the
Figure 5. The percentage of grid middleware over- cluster grid. The average response times of the NPB jobs

head with NGB (on two servers. are listed in Table 3.

According to the description in Section 2, we can cal-
culate the overall average response time is 330.42 sec-
onds.

YF]',F.

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’'04) COMPUTER
0-7695-2138-X/04 $ 20.00 IEEE SOCIETY



| Benchmarks/Problemssize | S [ W | A | B |
BT 0.99 | 22.90 | 69793 | 2686.75
CG 1.015 | 2.91 16.05 | 1009.82
EP 3.798 | 7.54 61.88 276.42
FT 0.809 | 2.27 39.87 598.30
IS 0.047 | 0.75 10.52 57.04
LU 0.238 | 40.76 | 392.41 | 2320.83
MG 0.094 | 2.055 | 26.90 9348
SP 0.291 | 42.81 | 385.32 | 1770.77

Table 3. Average Response Times of NPB Benchmarks (in Seconds).

| Benchmarks/Problems size | ED | HC | MB | VP |
S 0.189% | 0.229% | 0.191% | 0.268%
S (relative grid utilization) 65.2% 545% | 63.5% | 63.3%
N 0.0348% | 0.049% | 0.045% | 0.461%
W (relative grid utilization) | 98.3% 98.8% | 98.4% | 96.9%

Table 4. Utilization of the cluster grid.

5.3 Resource Utilization

Resource utilization is another major concern in grid
computing. At this moment, we mainly consider the
CPU utilization. Table 4 shows resource utilization of
the NGB on our cluster grid. We calculate the CPU uti-
lization by dividing the performance of the benchmarks
(in MFlop) by theoretical peak performance. In our ex-
periments, the CPU utilizations in all cases are very low
(far less than 1%). The low utilization of the cluster grid
reveals that the traditional utilization metric may not be
appropriate for grids. So in Table 4, we also show the
relative grid utilizations which are calculated according
to the description in Section 2.

6. Related Work

In computational grid benchmarking, few results has
been published although a lot work has been done in
performance evaluation [14] and benchmarking [10] for
traditional high performance systems.

The most recently work include grid job supersched-
uler architecture and performance in computational grid
environments by Shan et al. [16]. In their work they
propose several different policies for superschedulers
and use both real and synthetic workloads in simulation
to evaluation the performance of the superschedulers.

They also present several grid performance metrics in-
cluding response time and grid efficiency. But the their
definition of grid efficiency does not consider the situ-
ation where the sub-jobs within a single job are com-
puted on different servers (with different CPU speeds),
and this concept is improved in our work.

There is a working group in GGF [2] working on
grid benchmarking, but so far no detailed results have
been published or declared. There is also a grid perfor-
mance working group in GGF and they proposed a grid
monitoring architecture [17] as well as a simple case
study [5]. They mainly use a producer-consumer model
to define the relationship between the nodes. Their
architecture is more or less a specification of the re-
quired functionality in grid monitoring, and they adopt a
model consists of producer, which generates and pro-
vides the monitoring data, consumer, which receives
the monitoring data, and directory service, which is
responsible for maintaining the control information or
meta-data. They pose many design issues and prob-
lems need to be considered but without in-depth de-
scription of solutions, and currently it has not be imple-
mented. The producer-consumer-directory service ar-
chitecture mainly describes the scenario of how the per-
formance can be monitored. But it is basically a simpli-
fied specification and many important open issues (like
scalability, performance, etc) are not addressed.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’'04)
0-7695-2138-X/04 $ 20.00 IEEE



Some initiative work has been done by NASA people
based on NAS Grid benchmarks [9, 6, 11]. They also
did some work on tools and techniques for measuring
and improving grid performance [7].

Hamscher et al. tried to evaluate grid job scheduling
strategies [12] with a simulation environment based on
discrete event simulation instead of running benchmarks
or applications on grids. Their performance metrics are
also common criteria like average response-time and uti-
lization of the machines.

GridBench [3] is a tool for benchmarking grids and
it is a subproject of CrossGrid [1]. GridBench pro-
vides a framework for the user to run the benchmarks on
grid environments by providing functions like job sub-
mission, benchmarking results collection, archiving and
publishing. Although some traditional benchmark suites
(like Linpack, NPB, etc) are revised and included by
GridBench, currently it is mainly focused on providing
the portal and environment for users instead of develop-
ing benchmarking applications. The GridBench people
also discuss the grid benchmark metrics, but so far no
novel metrics are proposed and measured.

There are also some benchmark probes for Grid as-
sessment done by Chun et al. [8]. They developed a set
of probes that exercise basic grid operations by simu-
lating simple grid applications. Their probes fall into
the low level measurement on basic grid operations such
as file transfers, remote execution, and queries to Grid
Information Services. The collected data include com-
pute times, network transfer times, and Globus middle-
ware overhead. They also declare that they are focusing
on data-intensive benchmarks based on applications in
domains such as bio-informatics or physics. Basically
their problems are rather simple. They mainly measure
the performance of pipelined applications which transfer
a large volume of data from database node to compute
node and transfers the result file to the results node. The
real data grid situation can be much more complex and
more sophisticated models are needed.

Performance forecasting in metacomputing environ-
ment also has been explored in FAST system [15] by
Quinson et al. The FAST system heavily relies on the
Wolski et al.’s Network Weather Service [18]. It also
provides routine benchmarking to test the target sys-
tem’s performance in executing the standard routines so
that a prediction can be made on these results.

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’'04)
0-7695-2138-X/04 $ 20.00 IEEE

7. Conclusion

In this paper we present some preliminary analysis
on grid performance metrics and show some experimen-
tal results of using NGB/NPB to evaluation the APSTC
cluster grid and NTU Campus Grid. Our experiments
with NGB show that the grid middleware overhead can
become negligible for large size grid applications. We
also show that Traditional resource utilization may not
be appropriate for computations grids and relative grid
utilization could be a more suitable metric. Our work is
a part of the campus grid performance evaluation and it
is still ongoing. Our future work include deeper analy-
sis of the NGB on grids, the performance evaluation of
the whole campus grid, defining new performance met-
rics to describe and measure the character of the grids,
and development of new benchmarks representing other
class and areas of grid applications.

8. Acknowledgement

We thank NTU campus grid team members (Prof.
Lee, Hee Khiang) for providing us the relative informa-
tion about the campus grid and their cooperation for our
work.

References

[1] CrossGrid. http://www.cs.ucy.ac.cy/crossgrid/.
[2] GGF Grid Benchmarking.
http://forge.gridforum.org/projects/gb-rg.
[3] GridBench. http://www?2.cs.ucy.ac.cy/
get/gridb/gridb.html.
[4] NTU Campus Grid. http://ntu-cg.ntu.edu.sg/.
[5] A. Aydt, D. Gunter, W. Smith, B. Tierney, and V. Taylor.
A Siimple Case Study of a Grid Performance system.
Technical Report GWD-Perf-9-3, GGF Performance
Working Group, 2002. http://www-didc.1bl.gov/GGF-
PERF/GMA-WG/papers/GWD-GP-9-3.pdf.
D. Bailey, E. Barscz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson,
T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga. The NAS Parallel Benchmarks.
Technical Report NAS-94-007, NASA Advanced Super-
computing (NAS) Division, NASA Ames Research Cen-
ter, 1994.
R. Biswas, M. Frumkin, W. Smith, and R. V. der Wi-
jngaart. Tools and Techniques for Measuring and Im-
proving Grid Performance. In IWDC2002, LNCS 2571,
pages 45-54, 2002.

geor-

[6

—_

[7

—

YF]',F.

COMPUTER
SOCIETY



[8] G. Chun, H. Dail, H. Casanova, and A. Snavely.
Benchmark Probes for Grid Assessment. Tech-
nical  Report  CS2003-0760, UCSD,  2002.
http://grail.sdsc.edu/projects/grasp/publications.html.

[9] R. E V. der Wijngaart and M. Frumkin. NAS Grid
Benchmarks Version 1.0. Technical Report NAS-02-
005, NASA Advanced Supercomputing (NAS) Division,
NASA Ames Research Center, 2002.

[10] R. Eigenmann. Performance Evaluation And Bench-
marking with Realistic Applications. The MIT Press,
2001.

[11] M. A. Frumkin, M. Schultz, H. Jin, and J. Yan. Perfor-
mance and Scalability of the NAS Parallel Benchmarks
in Java. In the International Parallel and Distributed
Processing Symposium (IPDPS’03), 2003.

[12] V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. Evaluation of Job-Scheduling Strategies
for Grid Computing. Lecture Notes in Computer Sci-
ence, 1971:191-202, 2000.

[13] K. Hwang and Z. Xu. Scalable Parallel Computing.
McGraw-Hill, 1998.

[14] R.Jain. The Art of Computer Systems Performance Anal-
ysis. WILEY, 1992.

[15] M. Quinson. Dynamic Performance Forecasting for
Network-Enabled Servers in a Metacomputing Environ-
ment. In International Workshop on Performance Mod-
eling, Evaluation, and Optimization of Parallel and Dis-
tributed Systems (PMEO-PDS02), Apr. 2002.

[16] H. Shan, L. Oliker, and R. Biswas. Job Superscheduler
Architecture and Performance in Computational Grid
Environments. In the Proceedings of ACM Super Com-
puting 2003, 2003.

[17] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany,
V. Taylor, and R. Wolski. A Grid Monitoring Ar-
chitecture. Technical Report GWD-Perf-16-3, GGF
Performance Working Group, 2002. http://www-
didc.Ibl.gov/GGF-PERF/GMA-W G/papers/GWD-GP-
16-3.pdf.

[18] R. Wolski, N. T. Spring, and J. Hayes. The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Future Gener-
ation Copmuting systems, Metacomputing Issue, 15(5-
6):757-768, Oct. 1999.

YF]',F.

Proceedings of the Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region (HPCAsia’'04) COMPUTER
0-7695-2138-X/04 $ 20.00 IEEE SOCIETY



	footer1: 


