Chapter 2
 Circuit elements

Exercises

Ex. 2.3-1
If $v_{1}=\frac{d i_{1}}{d t}$ and $v_{2}=\frac{\mathrm{di}_{2}}{d t}$ then $v_{1}+v_{2}=\frac{d i_{1}}{d t}+\frac{d i_{2}}{d t}=\frac{d}{d t}\left(i_{1}+i_{2}\right)$
thus satisfying the property of superposition.
Since $\mathrm{v}_{1}=\frac{\mathrm{di}_{1}}{\mathrm{dt}}$ and for $k i_{1}$ we get $\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{ki}_{1}\right)=\mathrm{k} \frac{\mathrm{di}}{\mathrm{dt}}$, thus the property of homogeneity
is also satisfied. Thus the element is linear.

Ex. 2.3-2
Consider homogeneity only.
For $\mathrm{i}<0$ an excitation, i, yields $\mathrm{v}=0$ and an excitation, Ki, yields $\mathrm{v}=0$ as well.
Since the response, v, does not scale in the manner of the excitation, i, the property of homogeneity is not satisfied.

Ex. 2.3-3 a) $\quad v=\left(\frac{2.5}{1}\right) \mathrm{i} \quad$ for $-1<\mathrm{i}<1$
b) $\quad=\left(\frac{-2}{1.5}\right) \mathrm{i}=\frac{-4}{3} \mathrm{i}=\underline{-1.333 \mathrm{i}}$ for $-1.5<\mathrm{i}<1.5$

$$
\mathrm{P}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{(10 \mathrm{v})^{2}}{100 \Omega}=\underline{1 \mathrm{~W}}
$$

Ex. 2.5-1

Ex. 2.5-2 $\quad \mathrm{P}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{(10 \cos \mathrm{t})^{2}}{10}=\underline{10 \cos ^{2} \mathrm{t} \mathrm{W}}$

Ex. 2.8-1 $\quad i_{c}=-1.2 \mathrm{~A}, \mathrm{v}_{\mathrm{d}}=24 \mathrm{~V}$
$\mathrm{i}_{\mathrm{d}}=4(-1.2)=-4.8 \mathrm{~A}$
$\mathrm{P}=\mathrm{vi}=(24)(-4.8 \mathrm{~A})=-115.2 \mathrm{~W}$ absorbed

Ex. 2.8-2

$$
\begin{aligned}
\mathrm{v}_{\mathrm{c}} & =2 \mathrm{~V}, \mathrm{i}_{\mathrm{d}}=1.5 \mathrm{~A} \\
\mathrm{v}_{\mathrm{d}} & =2(2)=4 \mathrm{~V} \\
\mathrm{P} & =\mathrm{vi}=(4 \mathrm{~V})(1.5 \mathrm{~A})=6 \mathrm{~W} \text { absorbed }
\end{aligned}
$$

Ex. 2.8-3 $\quad i_{c}=1.25 A, i_{d}=1.75 \mathrm{~A}$
$\mathrm{v}_{\mathrm{d}}=2(1.25)=2.5 \mathrm{~V}$
$\mathrm{P}=\mathrm{vi}=(2.5 \mathrm{~V})(1.75 \mathrm{~A})=\underline{4.375 \mathrm{~W} \text { absorbed }}$

Ex. 2.9-1

$$
\theta=45^{\circ}, \mathrm{I}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{p}}=20 \mathrm{k} \Omega
$$

$$
\begin{aligned}
& \text { where } \mathrm{a}=\frac{\theta}{360} \Rightarrow \mathrm{aR}_{\mathrm{p}}=\frac{45}{360}(20 \mathrm{k} \Omega)=2.5 \mathrm{k} \Omega \\
& \begin{array}{c}
\mathrm{v}
\end{array}=\mathrm{iR} \\
& \mathrm{v}_{\mathrm{m}}=(2 \mathrm{~mA})(2.5 \mathrm{k} \Omega)=\underline{5 \mathrm{~V}}
\end{aligned}
$$

Ex. 2.9-2 $\quad \mathrm{v}=10 \mathrm{~V}, \mathrm{i}=280 \mu \mathrm{~A}, \mathrm{k}=1 \frac{\mu \mathrm{~A}}{\mathrm{o}} \mathrm{K}$ for AD 590
$\mathrm{i}=\mathrm{kT}$
$\mathrm{T}=\mathrm{i} / \mathrm{K}=(280 \mu \mathrm{~A})\left(1 \frac{{ }^{\circ} \mathrm{K}}{\mu \mathrm{A}}\right)=\underline{280^{\circ} \mathrm{K}}$

Ex. 2.10-1 t = is (switch closed)
$\mathrm{i}=\mathrm{v} / \mathrm{R}=12 \mathrm{~V} / 3 \mathrm{k} \Omega=4 \mathrm{~mA}$
$\mathrm{t}=5$ (switch open) $\mathrm{i}=0 \mathrm{~A}$

Ex. 2.10-2 $t=4 s$ (both switches open)
$\underline{i=0}$

Ex. 2.10-3 $\quad \mathrm{t}=4 \mathrm{~s}$ (switch up)
$\mathrm{v}=\mathrm{iR}=(2 \mathrm{~mA})(3 \mathrm{k} \Omega)=\underline{6 \mathrm{~V}}$
$\mathrm{t}=6 \mathrm{~s}$ (switch down)
$\mathrm{v}=0$

Ex. 2.10-4 $\quad t=1 \mathrm{~s}$ (switch up)
$\mathrm{i}=\mathrm{v} / \mathrm{R}=(6 \mathrm{~V}) /(3 \mathrm{k} \Omega)=\underline{2 \mathrm{~mA}}$
$\mathrm{t}=3 \mathrm{~s}($ switch up)
$\mathrm{i}=\mathrm{v} / \mathrm{R}=(12 \mathrm{~V}) /(3 \mathrm{k} \Omega)=\underline{4 \mathrm{~mA}}$

Problems

Section 2-3 Engineering and Linear Models

P 2.3-1 The element is not linear. For example, doubling the current from 2 A to 4 A does not double the voltage. Hence, the property of homogeneity is not satisfied.
\mathbf{P} 2.3-2 Plotting v versus i using the given data produces a straight line with a slope equal to $16 \mathrm{~V} / \mathrm{A}$. This straight line passes through the origin. The equation of the line is $v=16 i$. Such a relationship was shown to be linear in Example 2.3-1.
\mathbf{P} 2.3-3 (a) The data points do indeed lie on a straight line. The slope of the line is $120 \mathrm{~V} / \mathrm{A}$ and the line passes through the origin so the equation of the line is $v=120 i$. The element is indeed linear.
(b) When $i=40 \mathrm{~mA}, \mathrm{v}=(120 \mathrm{~V} / \mathrm{A}) \times(40 \mathrm{~mA})=(120 \mathrm{~V} / \mathrm{A}) \times(0.04 \mathrm{~A})=4.8 \mathrm{~V}$
(c) When $v=4 \mathrm{~V}, i=\frac{4}{120}=0.033 \mathrm{~A}=33 \mathrm{~mA}$.
\mathbf{P} 2.3-4 (a) The data points do indeed lie on a straight line. The slope of the line is $256.5 \mathrm{~V} / \mathrm{A}$ and the line passes through the origin so the equation of the line is $v=256.5 i$. The element is indeed linear.
(b) When $i=4 \mathrm{~mA}, \mathrm{v}=(256.5 \mathrm{~V} / \mathrm{A}) \times(4 \mathrm{~mA})=(256.5 \mathrm{~V} / \mathrm{A}) \times(0.004 \mathrm{~A})=1.026 \mathrm{~V}$
(c) When $v=12 \mathrm{~V}, i=\frac{12}{256.5}=0.04678 \mathrm{~A}=46.78 \mathrm{~mA}$.

P2.3-5

$$
\begin{aligned}
\mathrm{v} & =\sqrt{\mathrm{i}} \\
\mathrm{v}^{2} & =\mathrm{i}
\end{aligned}
$$

Element is not linear

P 2.3-6 Let $\mathrm{i}=1 \mathrm{~A}$, then $\mathrm{v}=3 \mathrm{i}+5=8 \mathrm{~V}$. Next $2 \mathrm{i}=2 \mathrm{~A}$ but $16=2 \mathrm{v} \neq 3(2 \mathrm{i})+5=11$. . Hence, the property of homogeneity is not satisfied. The element is not linear.

P2.3-7

a)

b) \quad efficiency $=\frac{\mathrm{p}_{\text {load }}}{\mathrm{p}_{\text {gen }}}$

$$
\text { now } P_{\text {load }}=v_{\text {load }}^{2} / R_{\text {load }} \Rightarrow R_{\text {load }}=\frac{\left(9 \times 10^{5}\right)^{2}}{1.2 \times 10^{9} \mathrm{~W}}=675 \Omega
$$

$$
\therefore \mathrm{i}=\frac{\mathrm{v}_{\text {load }}}{\mathrm{R}_{\text {load }}}=\frac{9 \times 10^{5}}{675}=1.33 \times 10^{3} \mathrm{~A}
$$

$$
\therefore \mathrm{P}_{\text {gen }}=\mathrm{v}_{\text {gen }} \mathrm{i}=\left(9.5 \times 10^{5}\right)\left(1.33 \times 10^{3}\right)=1.27 \times 10^{9} \mathrm{~W}
$$

$$
\therefore \text { efficiency }=\frac{\mathrm{P}_{\text {load }}}{\mathrm{P}_{\mathrm{gen}}}=\frac{1.2 \mathrm{GW}}{1.27 \mathrm{GW}}=\underline{0.945}
$$

c) lost power goes to the resistance in power lines
d)

$$
\mathrm{W}=\mathrm{P} \Delta \mathrm{t}=\left(1.2 \times 10^{9} \mathrm{~W}\right)(24 \mathrm{hr})(3600 \mathrm{~s} / \mathrm{hr})=\underline{1.04 \times 10^{14} \mathrm{~J}}
$$

P2.3-8 Charging power to battery: $\mathrm{P}=12(2.8 \mathrm{~A})=33.6 \mathrm{~W}$
total power to charging source: $\mathrm{P}_{\mathrm{c}}=(14.52) \times 2.8=\underline{40.66 \mathrm{~W}}$
total power to battery: $\mathrm{P}_{\mathrm{b}}=(12.0+1.68) \times 2.8=\underline{38.3 \mathrm{~W}}$
total power lost in charger: $\mathrm{P}_{1}=.84(2.8)=\underline{2.352 \mathrm{~W}}$
now $2.8(12+1.68+.84)=2.8(14.52)$
so power from source $=$ total power absorbed by 3 elements need 3360 C of charge
$\mathrm{i}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}}$ or $\Delta \mathrm{t}=\frac{\Delta \mathrm{q}}{\mathrm{i}}=\frac{3360}{2.8}=1200 \mathrm{~s}=\underline{20 \text { minutes }}$

Section 2-4 Active and Passive Circuit Elements

P2.4-1
a) $\quad P(t)=v i=(10 \sin 100 t)(2 \cos 100 t m A)$

$$
=20 \sin 100 t \cos 100 t=\underline{10 \sin 200 t \mathrm{~mW}}
$$

b) power absorbed for $\frac{2 \mathrm{n} \pi}{200}<\mathrm{t}<\frac{(2 \mathrm{n}+1) \pi}{200} \quad \mathrm{n}=0,1,2 \ldots$

$$
\text { power delivered for } \frac{(2 \mathrm{n}-1) \pi}{200}<\mathrm{t}<\frac{2 \mathrm{n} \pi}{200} \quad \mathrm{n}=1,2,3 \ldots
$$

P2.4-2

$$
\begin{aligned}
& P=v i=\left(2 \frac{d}{d t}(2 \sin t)\right)(2 \sin t) \\
& =(4 \cos t)(2 \sin t)=8 \cos t \sin t \quad t>0 \\
& \mathrm{~W}=\int_{0}^{\mathrm{t}} \mathrm{Pdt}=8 \int_{0}^{\mathrm{t}} \cos \mathrm{t} \sin \mathrm{tdt} \\
& =\left.\frac{8}{2} \sin ^{2} \mathrm{t}\right|_{0} ^{\mathrm{t}}=4 \sin ^{2} \mathrm{t}>0 \\
& \therefore \text { element is passive }
\end{aligned}
$$

Section 2-5 Resistors

P2.5-1

$\mathrm{i}=\mathrm{i}_{\mathrm{s}}=3 \mathrm{~A}$ and $\mathrm{v}=\mathrm{Ri}=7 \times 3=\underline{21 \mathrm{v}}$
v and i adhere to the passive convention
$\therefore \mathrm{P}=\mathrm{vi}=21 \times 3=\underline{63 \mathrm{~W}}$ is the power absorbed by the resistor.

P2.5-2

$$
\begin{aligned}
\mathrm{i} & =\mathrm{i}_{\mathrm{s}}=3 \mathrm{~mA} \text { and } \mathrm{v}=24 \mathrm{~V} \\
\mathrm{R} & =\frac{\mathrm{v}}{\mathrm{i}}=\frac{24}{.003}=8000=\underline{8 \mathrm{~K} \Omega} \\
\mathrm{P} & =\left(3 \times 10^{-3}\right) \times 24=72 \times 10^{-3}=72 \mathrm{~mW}
\end{aligned}
$$

P2.5-3

P2.5-4

P2.5-5

v_{2} and i_{2} do not adhere to the passive convention so $i_{2}=-\frac{v_{2}}{R_{2}}=-\frac{160}{25}=-\frac{-6 \mathrm{~A}}{}$
The power absorbed by R_{1} is $P_{1}=v_{1} i_{1}=150 \cdot 3=450 \mathrm{~W}$
The power absorbed by R_{2} is $P_{2}=-v_{2} i_{2}=-150(-6)=\underline{900 W}$

P2.5-6

P2.5-7

Model the heater as a resistor, then from $P=\frac{v^{2}}{R} \Rightarrow R=\frac{v^{2}}{P}=\frac{(250)^{2}}{1000}=\underline{62.5 \Omega}$
with a 210 V source $\quad \mathrm{P}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{(210)^{2}}{62.5}=\underline{705.6 \mathrm{~W}}$

P2.5-8

The current required by the mine lights is: $i=\frac{P}{v}=\frac{5000}{120}=125 / 3 \mathrm{~A}$
Power loss in the wire is: $\mathrm{i}^{2} \mathrm{R}$
Thus the resistance of the copper wire is

$$
\mathrm{R}=\frac{0.05 \mathrm{P}}{\mathrm{i}^{2}}=\frac{0.05 \times 5000}{(125 / 3)^{2}}=0.144 \Omega
$$

now since the length of the wire is

$$
\mathrm{L}=2 \times 100=200 \mathrm{~m}
$$

thus $\mathrm{R}=\mathrm{PL} / \mathrm{A} \quad$ with $\mathrm{P}=1.7 \times 10^{-6} \Omega \cdot \mathrm{~cm}$ from table $2-1$

$$
\Rightarrow A=\frac{\mathrm{PL}}{\mathrm{R}}=\frac{1.7 \times 10^{-6} \times 20,000}{0.144}=\underline{0.236 \mathrm{~cm}^{2}}
$$

Section 2-6 Independent Sources

P2.6-1
(a) $\quad i=\frac{v_{\mathrm{s}}}{\mathrm{R}}=\frac{15}{5}=\underline{3 \mathrm{~A}}$

$$
\mathrm{P}=\mathrm{Ri}^{2}=5\left(3^{2}\right)=45 \mathrm{~W}
$$

(b) i and P do not depend on i_{s}. The values of i and P are 3 A and 45 W both when $i_{s}=3 \mathrm{~A}$ and when $\mathrm{i}_{\mathrm{s}}=5 \mathrm{~A}$.

P2.6-2
(a) $v=R i_{s}=5 \cdot 2=\underline{10 \mathrm{~V}}$
$\mathrm{P}=\frac{\mathrm{v}^{2}}{\mathrm{R}}=\frac{10^{2}}{5}=\underline{20 \mathrm{~W}}$
(b) v and P do not depend on V_{s}. The values of v and P are 10 V and 20 W both when $\mathrm{v}_{\mathrm{s}}=10 \mathrm{~V}$ and when $\mathrm{v}_{\mathrm{s}}=5 \mathrm{~V}$

P2.6-3

Consider the current source. i_{s} and v_{s} do not adhere to the passive convention,
so $P_{c s}=i_{s} v_{s}=3 \cdot 12=\underline{36 \mathrm{~W}}$ is the power supplied by the current source.

Consider the voltage source. i_{s} and v_{s} do adhere to the passive convention,
so $P_{v s}=i_{s} v_{s}=3 \cdot 12=\underline{36 \mathrm{~W}}$ is the power absorbed by the voltage source.
\therefore The voltage source supplies -36 W .

P2.6-4

Consider the current source. i_{s} and v_{s} adhere to the passive convention
so $\mathrm{P}_{\mathrm{cs}}=\mathrm{i}_{\mathrm{s}} \mathrm{v}_{\mathrm{s}}=3 \cdot 12=\underline{36 \mathrm{~W}}$ is the power absorbed by the current source.
Current source supplies -36 W .

Consider the voltage source. i_{s} andv $_{\mathrm{s}}$ do not adhere to the passive convention
so $P_{v s}=i_{s} v_{s}=3 \cdot 12=\underline{36 \mathrm{~W}}$ is the power supplied by the voltage source.

P2.6-5
a) $\quad \mathrm{P}=\mathrm{vi}=(2 \cos \mathrm{t})(10 \cos \mathrm{t})=\underline{20 \cos ^{2} \mathrm{t} m \mathrm{~W}}$
b) $\mathrm{W}=\int_{0}^{1} \mathrm{P} d t=\int_{0}^{1} 20 \cos ^{2} \mathrm{t} \mathrm{dt}$

$$
=\left.20\left(\frac{1}{2} \mathrm{t}+\frac{1}{4} \sin 2 \mathrm{t}\right)\right|_{0} ^{1}=\underline{10+5 \sin 2 \mathrm{~mJ}}
$$

Section 2-7 Voltmeters and Ammeters

P2.7-1

(a) $\quad \mathrm{R}=\mathrm{v} / \mathrm{i}=\frac{5 \mathrm{~V}}{.5 \mathrm{~A}}=\underline{10 \Omega}$
(b) The voltage, 12 V , and current, 0.5 A , of the voltage source adhere to the passive convention. So $\mathrm{P}=12(0.5)=6 \mathrm{~W}$ is the power absorbed by the voltage source. The voltage source delivers -6 W.
P2.7-2

Section 2-8 Dependent Sources

P2.8-1

$$
\left\{\begin{array}{l}
i_{a}=2 A \\
\pm i_{a}=V_{b}=8 V
\end{array} \quad r=\frac{v_{b}}{i_{a}}=\frac{8 V}{2 A}=\underline{4 \Omega}\right.
$$

P2.8-2 $\quad \mathrm{v}_{\mathrm{b}}=8 \mathrm{~V} ; \mathrm{gv}_{\mathrm{b}}=\mathrm{i}_{\mathrm{a}}=2 \mathrm{~A} ; \mathrm{g}=\frac{\mathrm{i}_{\mathrm{a}}}{\mathrm{v}_{\mathrm{b}}}=\frac{2 \mathrm{~A}}{8 \mathrm{~V}}=0.25 \frac{\mathrm{~A}}{\mathrm{~V}}$

P2.8-3 $i_{b}=8 A ; \quad \mathrm{di}_{\mathrm{b}}=\mathrm{i}_{\mathrm{a}}=32 \mathrm{~A} ; \quad \mathrm{d}=\frac{\mathrm{i}_{\mathrm{a}}}{\mathrm{i}_{\mathrm{b}}}=\frac{32 \mathrm{~A}}{8 \mathrm{~A}}=4 \frac{\mathrm{~A}}{\mathrm{~A}}$

P2.8-4 $\quad \mathrm{v}_{\mathrm{a}}=2 \mathrm{~V} ; \quad \mathrm{bv}_{\mathrm{a}}=\mathrm{v}_{\mathrm{b}}=8 \mathrm{~V} ; \quad \mathrm{b}=\frac{\mathrm{v}_{\mathrm{b}}}{\mathrm{v}_{\mathrm{a}}}=\frac{8 \mathrm{~V}}{2 \mathrm{~V}}=4 \frac{\mathrm{~V}}{\mathrm{~V}}$

Section 2-9 Transducers
P2.9-1

$$
\begin{aligned}
& \mathrm{a}=\frac{\theta}{360}, \quad \theta=\frac{360 \mathrm{v}_{\mathrm{m}}}{\mathrm{R}_{\mathrm{p}} \mathrm{i}} \\
& \theta=\frac{(360)(23 \mathrm{~V})}{(100 \mathrm{k} \Omega)(1.1 \mathrm{~mA})}=\underline{75.27^{\circ}}
\end{aligned}
$$

P2.9-2

$$
\begin{aligned}
& \text { AD590 : } \mathrm{K}=1 \frac{\mu \mathrm{~A}}{{ }^{\circ} \mathrm{K}}, \mathrm{~V}=20 \mathrm{~V} \text { (voltage condition satisfied) } \\
& \begin{array}{l}
4 \mu \mathrm{~A}<\mathrm{i}<13 \mu \mathrm{~A} \\
\mathrm{~T}=\mathrm{i} / \mathrm{k} \\
\quad \underline{4}^{\circ} \mathrm{K}<\mathrm{T}<13^{\circ} \mathrm{K}
\end{array}
\end{aligned}
$$

Section 2-10 Switches
P2.10-1
$\mathrm{t}=1 \mathrm{~s}$

$\mathrm{t}=4 \mathrm{~s}$

$$
\mathrm{i}=\mathrm{v} / \mathrm{R}=\frac{15 \mathrm{~V}}{5 \mathrm{k} \Omega}=3 \underline{\mathrm{~mA}}
$$

P2.10-2

Verification Problems

VP 2-1 $\quad \mathrm{v}_{0}=40$ and $\mathrm{i}_{\mathrm{s}}=-(-2)=2$. (Notice that the ammeter measures $-\mathrm{i}_{\mathrm{s}}$ rather than i_{s}.) So

$$
\frac{\mathrm{v}_{0}}{\mathrm{i}_{\mathrm{s}}}=\frac{40 \mathrm{~V}}{2 \mathrm{~A}}=20 \frac{\mathrm{~V}}{\mathrm{~A}}
$$

Your lab partner is wrong.

VP 2-2 We expect the resistor current to be $\mathrm{i}=\frac{\mathrm{v}_{\mathrm{s}}}{\mathrm{R}}=\frac{12 \mathrm{~V}}{25 \Omega}=0.48 \mathrm{~A}$. The Power absorbed by this resistor will be $\mathrm{P}=\mathrm{iv}_{\mathrm{s}}=(0.48 \mathrm{~A})(12 \mathrm{~V})=5.76 \mathrm{~W}$ A half watt resistor can't absorb this much power. You should not try another resistor.

Design Problems

DP 2-1:

1.) $\frac{10}{R}>0.04 \Rightarrow R<\frac{10}{0.04}=250 \Omega$
2.) $\frac{10^{2}}{R}<\frac{1}{2} \Rightarrow R>200 \Omega$

Therefore $200<\mathrm{R}<250 \Omega$. For example, $\mathrm{R}=225 \Omega$.
DP 2-2:
1.) $2 R>40 \Rightarrow R>20 \Omega$
2.) $2^{2} R<15 \Rightarrow R<\frac{15}{4}=3.75 \Omega$

Therefore $20<\mathrm{R}<3.75 \Omega$. These conditions cannot satisfied simultaneously.

DP 2-3:

$$
\begin{aligned}
& P_{1}=(10 \mathrm{~mA})^{2} \cdot(1000 \Omega)=(.01)^{2}(1000)=0.1 \mathrm{~W}<\frac{1}{8} W \\
& P_{2}=(10 \mathrm{~mA})^{2} \cdot(2000 \Omega)=(.01)^{2}(2000)=0.2 \mathrm{~W}<\frac{1}{4} W \\
& P_{3}=(10 \mathrm{~mA})^{2} \cdot(4000 \Omega)=(.01)^{2}(4000)=0.4 W<\frac{1}{2} W
\end{aligned}
$$

