Chapter 3-Resistive Circuits

Exercises

Ex 3.3-1

$$
i_{3}=\frac{6 \mathrm{~V}}{\mathrm{R}_{3}}=\frac{6 \mathrm{~V}}{2 \Omega}=3 \mathrm{~A}
$$

from KCL at top node

$$
\mathrm{i}_{2}=2-\mathrm{i}_{3}=2-3=-1 \mathrm{~A}
$$

KVL around 2nd loop : $-6+\mathrm{R}_{2} \mathrm{i}_{2}+\mathrm{v}_{2}=0 \quad \Rightarrow \mathrm{v}_{2}=6-(1)(-1)=7 \mathrm{~V}$

Ex 3.3-2

$$
-18+0-12-v_{a}=0 \Rightarrow v_{a}=-30 \mathrm{~V}
$$

Ex 3.3-3 $\quad-v_{a}-10+4 v_{a}-8=0 \quad \Rightarrow \quad v_{a}=\frac{18}{3}=6 \mathrm{~V}$

Ex 3.4-1

$$
\text { now } \left.\begin{array}{rl}
\mathrm{P}_{6 \Omega} & =\mathrm{i}^{2}(6)=(1)^{2}(6)=6 \mathrm{~W} \\
\mathrm{P}_{3 \Omega_{1}} & =\mathrm{i}^{2}(3)=(1)^{2}(3)=3 \mathrm{~W} \\
\mathrm{P}_{3 \Omega_{2}} & =\mathrm{i}^{2}(3)=(1)^{2}(3)=3 \mathrm{~W}
\end{array}\right\} \mathrm{P}_{6 \Omega}+\mathrm{P}_{3 \Omega_{1}}+\mathrm{P}_{3 \Omega_{2}}=12 \mathrm{~W} \text { absorbed }
$$

Ex 3.4-2

$$
\begin{aligned}
& \text { if } \mathrm{P}_{0}=6 \mathrm{~W} \text { and } \mathrm{R}_{0}=6 \Omega \Rightarrow \mathrm{i}^{2}=\frac{\mathrm{P}_{0}}{\mathrm{R}_{0}}=\frac{6}{6}=1 \text { or } \mathrm{i}=1 \mathrm{~A} \\
\therefore & \mathrm{v}_{0}=\mathrm{iR}_{0}=(1)(6)=\underline{6 \mathrm{~V}}
\end{aligned}
$$

$$
\text { from KVL: }-\mathrm{v}_{\mathrm{s}}+\mathrm{i}(2+4+6+2)=0 \Rightarrow \underline{v_{s}}=14 \mathrm{i}=14 \mathrm{~V}
$$

Ex 3.4-3 from voltage divider $\Rightarrow \mathrm{v}_{\mathrm{m}}=\frac{25}{25+75} 8=2 \quad \mathrm{~V}$

Ex 3.4-4 from voltage divider $\Rightarrow \mathrm{v}_{\mathrm{m}}=\frac{25}{25+75}(-8)=-2 \quad \mathrm{~V}$

Ex. 3.5-1
Equiv. Ckt.

$$
\begin{aligned}
& \frac{1}{\operatorname{Reg}}=\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1} \\
& \operatorname{Reg}=\underline{1 / 4 \mathrm{k} \Omega}
\end{aligned}
$$

$$
i \text { in each } \mathrm{R}=1 / 4(1 \mathrm{~mA})=1 / 4 \mathrm{~mA}
$$

Ex 3.5-2 from current divider $\Rightarrow i_{m}=\frac{10}{10+40}(-5)=-2 \quad \mathrm{~A}$

Ex 3.6-1 $\quad R_{p}=\frac{(4)(2)}{4+2}=\frac{8}{6}=\frac{4}{3} \Omega$

$$
\therefore \mathrm{V}=\mathrm{R}_{\mathrm{p}}(3 \mathrm{~A})=\frac{4}{3}(3)=\underline{4 \mathrm{~V}}
$$

Problems

Section 3-3 Kirchoff's Laws

P3.3-1

$$
\begin{aligned}
\mathrm{KVL}: & \mathrm{v}_{1}+2-3-6-8+4=0 \quad \text { (outside loop) } \\
& \frac{\mathrm{v}_{1}=+11 \mathrm{~V}}{\mathrm{~K}_{2}+2-3-6=0} \quad \text { (right mesh) } \\
& \frac{\mathrm{v}_{2}=7 \mathrm{~V}}{} \\
\mathrm{KVL}: & 3+2-\mathrm{i}_{3}=0 \quad \text { (top node) } \\
& \underline{\mathrm{i}_{3}=5 \mathrm{~A}}
\end{aligned}
$$

P3.3-2

$$
\begin{aligned}
\text { KVL: }: & -\mathrm{v}_{1}+2+4+5=0 \quad \text { (outside loop) } \\
& \underline{\mathrm{v}_{1}=11 \mathrm{~V}} \\
\mathrm{KCL}: & -1+3+\mathrm{i}_{4}=0 \quad \text { (top,left node) } \\
& \underline{\mathrm{i}_{4}=-2 \mathrm{~A}} \\
\mathrm{KCL}: & 1+\mathrm{i}_{3}-3=0 \quad \text { (bottom, left node) } \\
& \underline{\mathrm{i}_{3}=2 \mathrm{~A}} \\
\mathrm{KCL}: & -\mathrm{i}_{4}+2+\mathrm{i}_{2}=0 \quad \text { (top,right node) } \\
& -(-2)+2+\mathrm{i}_{2}=0 \quad \Rightarrow \quad \underline{\mathrm{i}_{2}=-4 \mathrm{~A}}
\end{aligned}
$$

P3.3-3
KVL: $\quad-12-R_{2}(3)+v=0$ (outside loop)

$$
v=12+3 R_{2} \text { or } R_{2}=\frac{v-12}{3}
$$

KCL $\quad \mathrm{i}+\frac{12}{\mathrm{R}_{1}}-3=0$ (top node)

$$
\mathrm{i}=3-\frac{12}{\mathrm{R}_{1}} \text { or } \mathrm{R}_{1}=\frac{12}{3-\mathrm{i}}
$$

(a) $i=3-\frac{12}{6}=\underline{1 \mathrm{~A}}$
(b) $\quad \mathrm{R}_{2}=\frac{2-12}{3}=\underline{-\frac{10}{3} \Omega} ; \mathrm{R}_{1}=\frac{12}{3-1.5}=\underline{8 \Omega}$
(c) $24=-12 \mathrm{i}$, because 12 and i adhere to the passive convention.
$\therefore \underline{\mathrm{i}=-2 \mathrm{~A}}$ and $\mathrm{R}_{1}=\frac{12}{3+2}=\underline{2.4 \Omega}$
$9=3 \mathrm{v}$, because 3 and v do not adhere to the passive convention
$\therefore \underline{\mathrm{v}=3}$ and $\mathrm{R}_{2}=\frac{3-12}{3}=\underline{-3 \Omega}$
The situations described in (b) and (c) cannot occur if R_{1} and R_{2} are required to be nonnegative.

P3.3-4

Power absorbed by the 4Ω resistor $=4 \cdot i_{2}^{2}=\underline{100 \mathrm{~W}}$
Power absorbed by the 6Ω resistor $=6 \cdot i_{1}^{2}=\underline{24 \mathrm{~W}}$
Power absorbed by the 8Ω resistor $=8 \cdot \dot{i}_{4}^{2}=\underline{72 \mathrm{~W}}$

P3.3-5

$$
\mathrm{v}_{1}=8 \mathrm{~V}
$$

$$
\mathrm{v}_{2}=-8+8+12=12 \mathrm{~V}
$$

$$
v_{3}=2 \cdot 4=8 \mathrm{~V}
$$

$$
4 \Omega: \mathrm{P}=\frac{\mathrm{v}_{3}^{2}}{4}=\underline{16 \mathrm{~W}}
$$

$$
6 \Omega: \mathrm{P}=\frac{\mathrm{v}_{2}^{2}}{6}=\underline{24 \mathrm{~W}}
$$

$$
8 \Omega: \mathrm{P}=\frac{\mathrm{v}_{1}^{2}}{8}=\underline{8 \mathrm{~W}}
$$

P3.3-6

P3.3-7

P3.3-8

P3.3-9

$$
\begin{aligned}
\mathrm{P}_{10 \mathrm{~V}} & =(-10)(0.9)=-9 \mathrm{~W}_{\text {absorbed }}=\underline{9 \mathrm{~W}_{\text {delivered }}} \\
\mathrm{P}_{5 \mathrm{~V}}= & (5)(1)=5 \mathrm{~W}_{\text {absorbed }} \\
\mathrm{P}_{0.5 \mathrm{~A}}= & (-5)(0.5)=-2.5 \mathrm{~W}_{\text {absorbed }}=2.5 \mathrm{~W}_{\text {delivered }} \\
\mathrm{P}_{10 \Omega}= & (5)(0.5)=2.5 \mathrm{~W}_{\text {absorbed }} \\
\mathrm{P}_{25 \Omega}= & (10)(0.4)=4 \mathrm{~W}_{\text {absorbed }} \\
& \sum \mathrm{P}_{\text {absorbed }}=\underline{0 \mathrm{~W}} \quad \text { energy balance }
\end{aligned}
$$

P3.3-10

$$
\begin{gathered}
i_{a}+i_{b}=6-1=5 \mathrm{~mA}=0.005 \mathrm{~A} \\
-2 i_{a}+2 i_{b}-5\left(i_{a}-0.001\right)=0
\end{gathered}
$$

Solving yields:

$$
\begin{gathered}
i_{a}=0.00167=1.67 \mathrm{~mA} \\
i_{b}=0.005-i_{a}=0.00333=3.33 \mathrm{~mA}
\end{gathered}
$$

Section 3-4 A Single-Loop Circuit - The Voltage Divider
P3.4-1 $\quad V_{1}=\frac{6}{6+3+5+4} 12=\frac{6}{18} 12=\underline{4 \mathrm{~V}}$ $\mathrm{V}_{2}=\frac{3}{18} 12=\underline{2 \mathrm{~V}} ; \mathrm{V}_{3}=\frac{5}{18} 12=\frac{10}{3} \mathrm{~V}$ $\mathrm{V}_{4}=\frac{4}{18} 12=\frac{8}{\underline{3}} \mathrm{~V}$

P3.4-2
(a) $\mathrm{R}=6+3+2+4=\underline{15 \Omega}$
(b) \quad i $=\frac{28}{\mathrm{R}}=\frac{28}{15}=\underline{1.867 \mathrm{~A}}$
(c) $\mathrm{P}=28 \cdot \mathrm{i}$
(28 and i do not adhere to the passive convention.) $=28(1.867)=\underline{52.27 \mathrm{~W}}$

P3.4-3

$$
\begin{aligned}
\mathrm{iR}_{2} & =\mathrm{v}=8 \mathrm{~V} \\
12 & =\mathrm{iR}_{1}+\mathrm{v}=\mathrm{iR}_{1}+8 \\
& \Rightarrow 4=\mathrm{i} \mathrm{R}_{1}
\end{aligned}
$$

(a) $\quad \mathrm{i}=\frac{8}{\mathrm{R}_{2}}=\frac{8}{100} ; \mathrm{R}_{1}=\frac{4}{\mathrm{i}}=\frac{4 \cdot 100}{8}=\underline{50 \Omega}$
(b) $\mathrm{i}=\frac{4^{2}}{\mathrm{R}_{1}}=\frac{4}{100} ; \mathrm{R}_{2}=\frac{8}{\mathrm{i}}=\frac{8 \cdot 100}{4}=\underline{200 \Omega}$
(c) $1.2=12 \mathrm{i} \Rightarrow \mathrm{i}=0.1 \mathrm{~A} ; \mathrm{R}_{1}=\frac{4}{\mathrm{i}}=\underline{40 \Omega}$
$\mathrm{R}_{2}=\frac{8}{\mathrm{i}}=\underline{80 \Omega}$

P3.4-4

Voltage division

$$
\begin{aligned}
& \mathrm{v}_{1}=\frac{16}{16+8} 12=8 \mathrm{~V} \\
& \mathrm{v}_{3}=\frac{4}{4+8} 12=4 \mathrm{~V}
\end{aligned}
$$

KVL: $\mathrm{v}_{3}-\mathrm{v}-\mathrm{v}_{1}=0$
$\underline{v}=-4 \mathrm{~V}$

P3.4-5

using voltage divider: $\mathrm{v}_{0}=\left(\frac{100}{100+2 \mathrm{R}}\right) \mathrm{v}_{\mathrm{s}}$
$\left.\begin{array}{l}\text { with } \mathrm{v}_{\mathrm{s}}=20 \mathrm{~V} \text { and } \mathrm{v}_{0}=9 \mathrm{~V}, \mathrm{R}=61 \Omega \\ \text { with } \mathrm{v}_{\mathrm{s}}=28 \mathrm{~V} \text { and } \mathrm{v}_{0}=13 \mathrm{~V}, \mathrm{R}=58 \Omega\end{array}\right\} \underline{\mathrm{R}=60 \Omega}$

Section 3-5 Parallel Resistors and Current Division

P3.5-1

$$
\begin{aligned}
\mathrm{i}_{1}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{3}+\frac{1}{2}+\frac{1}{1}} \quad 4 & =\frac{1}{1+2+3+6} 4=\frac{1}{\underline{3} \mathrm{~A}} \\
\mathrm{i}_{2} & =\frac{\frac{1}{3}}{\frac{1}{6}+\frac{1}{3}+\frac{1}{2}+\frac{1}{1}} 4=\frac{2}{3} \mathrm{~A} ; \quad i_{3}=\frac{\frac{1}{2}}{\frac{1}{6}+\frac{1}{3}+\frac{1}{2}+\frac{1}{1}} 4=\underline{1 \mathrm{~A}} \\
\mathrm{i}_{4} & =\frac{1}{\frac{1}{6}+\frac{1}{3}+\frac{1}{2}+1} \quad 4=\underline{2 \mathrm{~A}}
\end{aligned}
$$

P3.5-2 (a) $\frac{1}{\mathrm{R}}=\frac{1}{6}+\frac{1}{12}+\frac{1}{4}=\frac{1}{2} \Rightarrow \underline{\mathrm{R}=2}$
(b) $\mathrm{v}=6 \cdot 2=\underline{12 \mathrm{~V}}$
(c) $\mathrm{P}=6 \cdot 12=\underline{72 \mathrm{~W}}$

P3.5-3 $\quad \mathrm{i}=\frac{8}{\mathrm{R}_{1}}$ or $\mathrm{R}_{1}=\frac{8}{\mathrm{i}}$

$$
8=\mathrm{R}_{2}(2-\mathrm{i}) \Rightarrow \mathrm{i}=2-\frac{8}{\mathrm{R}_{2}} \text { or } \quad \mathrm{R}_{2}=\frac{8}{2-\mathrm{i}}
$$

(a) $\quad i=2-\frac{8}{12}=\frac{4}{3} \mathrm{~A} ; \mathrm{R}_{1}=\frac{8}{4 / 3}=\underline{6 \Omega}$
(b) $\mathrm{i}=\frac{8}{12}=\frac{2}{\underline{3} \mathrm{~A}} ; \mathrm{R}_{2}=\frac{8}{2-\frac{2}{2}}=\underline{6 \Omega}$
(c) $\quad \mathrm{R}_{1}=\mathrm{R}_{2}$ will cause $\mathrm{i}=\frac{1}{2} 2=1 \mathrm{~A}$. The current in both R_{1} and R_{2} will be 1 A .
$2 \cdot \frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=8$; when $\mathrm{R}_{1}=\mathrm{R}_{2} \quad 2 \cdot \frac{1}{2} \mathrm{R}_{1}=8 \Rightarrow \mathrm{R}_{1}=8$
$\therefore \underline{\mathrm{R}_{1}=\mathrm{R}_{2}=8 \Omega}$

P3.5-4

Current division:

$$
\begin{aligned}
& i_{1}=\frac{8}{16+8}(-6)=-2 \mathrm{~A} \\
& i_{2}=\frac{8}{8+8}(-6)=-3 \mathrm{~A} \\
& i=i_{1}-i_{2}=+1 \mathrm{~A}
\end{aligned}
$$

P3.5-5 current division: $i_{2}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) i_{s}$ and Ohm's Law: $v_{o}=i_{2} R_{2}$ yields

$$
\mathrm{i}_{\mathrm{s}}=\left(\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{R}_{2}}\right)\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)
$$

plugging in $R_{1}=4 \Omega, v_{o}=9 \mathrm{~V}$ gives $\mathrm{i}_{\mathrm{s}}=3.15 \mathrm{~A}$
and $\mathrm{R}_{1}=6 \Omega, \mathrm{v}_{\mathrm{o}}=13 \mathrm{~V}$ gives $\mathrm{i}_{\mathrm{s}}=3.47 \mathrm{~A}$
So any $\quad 3.15 \mathrm{~A} \leq \mathrm{i}_{\mathrm{s}} \leq 3.47 \mathrm{~A}$ keeps $9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{o}}<13 \mathrm{~V}$.

P3.5-6

now $\mathrm{i}_{2}=\frac{\mathrm{v}_{\mathrm{ab}}}{\mathrm{R}_{2}+\mathrm{R}_{\mathrm{L}}}=\frac{40}{10+30}=1 \mathrm{~A}$ from KCL : $\mathrm{i}_{1}=\mathrm{i}_{\mathrm{s}}-\mathrm{i}_{2}=2-1=1 \mathrm{~A}$

$$
\therefore \mathrm{R}_{1}=\frac{\mathrm{V}_{\mathrm{ab}}}{\mathrm{i}_{1}}=\frac{40 \mathrm{~V}}{1 \mathrm{~A}}=\underline{40 \Omega}
$$

Section 3-7 Circuit Analysis

P3.7-1
(a) $\quad \mathrm{R}=16+\frac{48 \cdot 24}{48+24}=\underline{32 \Omega}$
(b) $\mathrm{v}=\frac{\frac{32 \cdot 32}{32+32}}{8+\frac{32 \cdot 32}{32+32}} 24=\underline{16 \mathrm{~V}} ; \quad \mathrm{i}=\frac{16}{32}=\frac{1}{2} \mathrm{~A}$
(c) $\quad \mathrm{i}_{2}=\frac{48}{48+24} \cdot \frac{1}{2}=\frac{1}{3} \mathrm{~A}$

P3.7-2
(a) $\mathrm{R}_{1}=4+\frac{3 \cdot 6}{3+6}=\underline{6 \Omega}$
(b) $\frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{12}+\frac{1}{6}+\frac{1}{6} \Rightarrow \mathrm{R}_{\mathrm{p}}=2.4 \Omega$

$$
\mathrm{R}_{2}=8+\mathrm{R}_{\mathrm{p}}=\underline{10.4 \Omega}
$$

(c) $\mathrm{i}_{2}+2=\mathrm{i}_{1}$

$$
\begin{aligned}
& -24+6 \mathrm{i}_{2}+\mathrm{R}_{2} \mathrm{i}_{1}=0 \\
& -24+6\left(\mathrm{i}_{1}-2\right)+10 \cdot 4 \mathrm{i}_{1}=0
\end{aligned}
$$

$$
\mathrm{i}_{1}=\frac{36}{16.4}=\underline{2.2 \mathrm{~A}} \quad \mathrm{v}_{1}=\mathrm{i}_{1} \mathrm{R}_{2}=2.2(10.4)=\underline{22.88 \mathrm{~V}}
$$

(d)

$$
\mathrm{i}_{2}=\frac{\frac{1}{6}}{\frac{1}{6}+\frac{1}{6}+\frac{1}{12}} 2.2=\underline{0.878 \mathrm{~A}}, \mathrm{v}_{2}=(0.878)(6)=\underline{5.3 \mathrm{~V}}
$$

(e) $\quad i_{3}=\frac{6}{3+6} i_{2}=0.585 \mathrm{~A}$

$$
\mathrm{P}=3 \mathrm{i}_{3}^{2}=\underline{1.03 \mathrm{~W}}
$$

P3.7-3

$$
12 v \underset{\square}{\stackrel{\sim A}{\square}} \stackrel{2(1+1)}{2+(1+1)}=1 \Omega
$$

$\mathrm{i}_{1}=\frac{1}{2}(1.5)=\frac{3}{4} \mathrm{~A}$

P 3.7-4
(a)

$$
\frac{1}{R_{2}}=\frac{1}{24}+\frac{1}{12}+\frac{1}{8} \Rightarrow R_{2}=4 \Omega \quad \text { and } \quad R_{1}=\frac{(10+8) \cdot 9}{(10+8)+9}=6 \Omega
$$

(b)

First, apply KVL to the left mesh to get $-27+6 i_{a}+3 i_{a}=0 \Rightarrow i_{a}=3 \mathrm{~A}$. Next, apply KVL to the left mesh to get $4 i_{b}-3 i_{a}=0 \quad \Rightarrow \quad i_{b}=2.25 \mathrm{~A}$.
(c)

$$
i_{2}=\frac{\frac{1}{8}}{\frac{1}{24}+\frac{1}{8}+\frac{1}{12}} 2.25=1.125 \mathrm{~A} \quad \text { and } \quad v_{1}=-(10)\left[\frac{9}{(10+8)+9} 3\right]=-10 \mathrm{~V}
$$

P3.7-5

$$
\frac{30}{10+30} v_{1}=6 \Rightarrow v_{1}=8 \mathrm{~V}
$$

$$
\frac{R_{2}}{R_{2}+10} 12=8 \quad \Rightarrow \quad R_{2}=20 \Omega
$$

$$
20=\frac{R_{1}(10+30)}{R_{1}+(10+30)} \Rightarrow R_{1}=40 \Omega
$$

Alternate values that can be used to change the numbers in this problem:

meter reading, V	Right-most resistor, Ω	R_{1}, Ω
6	30	40
4	30	10
4	20	15
4.8	20	30

P3.7-6

P 3.7-7

$$
\begin{gathered}
1 \times 10^{-3}=\frac{24}{12 \times 10^{3}+R_{p}} \Rightarrow R_{p}=12 \times 10^{3}=12 \mathrm{k} \Omega \\
12 \times 10^{3}=R_{p}=\frac{\left(21 \times 10^{3}\right) R}{\left(21 \times 10^{3}\right)+R} \Rightarrow R=28 \mathrm{k} \Omega
\end{gathered}
$$

P3.7 ${ }^{\text { }}$

$$
\begin{aligned}
\text { Voltage divider } & \Rightarrow \mathrm{v}=50\left(\frac{130 \| 500}{130 \| 500+200+20}\right)=15.963 \mathrm{~V} \\
& \therefore \mathrm{v}_{\mathrm{h}}=\mathrm{v}\left(\frac{100}{100+30}\right)=(15.963)\left(\frac{10}{13}\right)=\underline{12.279 \mathrm{~V}} \\
& \therefore \mathrm{i}_{\mathrm{h}}=\frac{\mathrm{v}_{\mathrm{h}}}{100}=\underline{12279 \mathrm{~A}}
\end{aligned}
$$

P 3.7-9

en en

P3.7-10
reduce ckt.

P 3.7-11
a)

$$
\operatorname{Req}=24 \| 12=\frac{(24)(12)}{24+12}=\underline{8 \Omega}
$$

b)
from voltage divider

$\mathrm{v}_{\mathrm{x}}=40\left(\frac{20}{20+4}\right)=100 / 3 \mathrm{~V} \quad \therefore \mathrm{i}_{\mathrm{x}}=\frac{100 / 3}{20}=\frac{5}{3} \mathrm{~A}$
from current divider $i=i_{x}\left(\frac{8}{8+8}\right)=5 / 6 \mathrm{~A}$

P3.7-12
a)

$$
\begin{aligned}
\operatorname{Req} & =36 \| 18 \\
& =\frac{(36)(18)}{36+18}=\underline{12 \Omega}
\end{aligned}
$$

b)

c)

P3.7-13

$R_{\text {eq }}=\frac{2 R(R)}{2 R+R}=\frac{2}{3} R$
$\mathrm{P}_{\substack{\text { delis. } \\ \text { to kt }}}=\frac{\mathrm{v}^{2}}{\operatorname{Req}_{\mathrm{eq}}}=\frac{240}{2 / 3 \mathrm{R}}=1920 \mathrm{~W}$
Thus $\underline{R=45 \Omega}$
P3.7-14

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}}=2+1+(6 \| 12)+(2| | 2) \\
& =3+4+1=\underline{8 \Omega} \\
& \therefore \mathrm{i}=\frac{40}{\text { Req }}=\frac{40}{8}=\underline{5 \mathrm{~A}} \\
& \text { from current divider } i_{1}=i\left(\frac{6}{6+12}\right)=(5)(1 / 3)=\underline{5 / 3} \mathrm{~A} \\
& \mathrm{i}_{2}=\mathrm{i}\left(\frac{2}{2+2}\right)=(5)(1 / 2)=5 / 2 \mathrm{~A}
\end{aligned}
$$

P3.7-15

$$
\text { Req }=5+\frac{1}{1 / 12+1 / R+1 / 10}=9 ; \text { solving for } \mathrm{R} \text { yields } \mathrm{R}=15 \Omega
$$

P3.7-16

R in parallel with $\mathrm{R}=\frac{\mathrm{R}}{2}$, R series with $\mathrm{R}=2 \mathrm{R}$

$$
\begin{aligned}
& \frac{\mathrm{R}}{2} \| 2 \mathrm{R}=\frac{\left(\frac{\mathrm{R}}{2}\right)(2 \mathrm{R})}{\frac{\mathrm{R}}{2}+2 \mathrm{R}}=\frac{2}{5} \mathrm{R} \leftarrow \text { same for both sides } \\
& \operatorname{Req}=\frac{\left(\frac{2}{5} \mathrm{R}\right)\left(\frac{2}{5} \mathrm{R}\right)}{\frac{2}{5} \mathrm{R}+\frac{2}{5} \mathrm{R}}=\frac{\mathrm{R}}{5} \text { but } \mathrm{Req}=20 \Omega, \quad \therefore \underline{\mathrm{R}=100 \Omega}
\end{aligned}
$$

Verification Problems

VP 3-1

KCL @ A: $\mathrm{i}_{3}=\mathrm{i}_{1}+\mathrm{i}_{2}$ $-1.167=-0.833+(-0.333)$
$-1.167=-1.166$ OK
KVL around dotted loop
$6 i_{3}+3 i_{2}+v+12=0$
yields $\mathrm{v}=-4.0 \mathrm{~V}$ not $\mathrm{v}=-2.0 \mathrm{~V}$

VP 3-2

reduce circuit $5+5=10$ in parallel with 20Ω gives 6.67Ω
by current division;

$$
\mathrm{i}=\left(\frac{6.67}{20+6.67}\right) 5=\underline{1.25 \mathrm{~A}}
$$

\therefore Reported value was correct.

VP 3-3
$\mathrm{v}_{0}=\left(\frac{320}{320+650+230}\right)(24)=\underline{6.4 \mathrm{~V}} \quad \therefore$ Reported value was incorrect.

VP 3-4

KVL left loop: $-14+0.1 \mathrm{i}_{\mathrm{a}}+1.2 \mathrm{i}_{\mathrm{h}}=0$
KVL right loop: $-12+0.05 \mathrm{i}_{\mathrm{b}}+1.2 \mathrm{i}_{\mathrm{h}}=0$
KCL @ $\mathrm{a}: \mathrm{i}_{\mathrm{a}}+\mathrm{i}_{\mathrm{b}}=\mathrm{i}_{\mathrm{h}} \leftarrow$ This alone shows the reported results were incorrect.
Solving the three above equations yields:
$\underline{\mathrm{i}_{\mathrm{a}}=16.8 \mathrm{~A}} \quad \underline{\mathrm{i}_{\mathrm{h}}=10.3 \mathrm{~A}} \quad \therefore$ Reported values were incorrect.
$\underline{\mathrm{i}_{\mathrm{b}}=-6.49 \mathrm{~A}}$

VP3-5

Top mesh: $0=4 i_{a}+4 i_{a}+2\left(i_{a}+\frac{1}{2}-i_{b}\right)=10(-0.5)+1-2(-2)$
Lower left mesh: $v_{s}=10+2\left(i_{a}+0.5-i_{b}\right)=10+2(2)=14 \mathrm{~V}$
Lower right mesh: $v_{s}+4 i_{a}=12 \Rightarrow v_{s}=12-4(-0.5)=14 \mathrm{~V}$

The KVL equations are satisfied so the analysis is correct.

VP 3-6 Apply KCL at nodes b and c to get:
KCL equations:
Node e: $-1+6=0.5+4.5$
Node a: $\quad 0.5+i_{c}=-1 \Rightarrow i_{c}=-1.5 \mathrm{~mA}$

Node d: $\quad i_{c}+4=4.5 \Rightarrow i_{c}=0.5 \mathrm{~mA}$

That's a contradiction. The given values of i_{a} and i_{b} are not correct.

Design Problems

DP 3-1

The specification on the power of the voltage source indicates

$$
\frac{24^{2}}{R_{1}+R_{2}+R_{p}} \leq \frac{1}{2} \Rightarrow R_{1}+R_{2}+R_{p} \geq 1152 \Omega
$$

Try $R_{p}=2000 \Omega$. Substituting into the equations obtained above using voltage division gives $3 R_{2}=R_{1}+R_{2}=2000$ and $2\left(R_{2}+2000\right)=R_{1}+R_{2}+2000$. Solving these equations gives $R_{1}=6000 \Omega$ and $R_{2}=2000 \Omega$.

With these resistance values, the voltage source supplies 48 mW while R_{1}, R_{2} and R_{p} dissipate $12 \mathrm{~mW}, 4 \mathrm{~mW}$ and 8 mW respectively. Therefore the design is complete.

DP 3-2
Try $\mathrm{R}_{2}=\infty$. That is, R_{2} is an open circuit. From KVL, 8 V will appear across R 1 . Using voltage division, $\frac{200}{R_{1}+200} 12=4 \Rightarrow R_{1}=400 \Omega$. The power required to be dissipated by R_{1} is $\frac{8^{2}}{400}=0.16 \mathrm{~W}<\frac{1}{8} \mathrm{~W}$. To reduce the voltage across any one resistor, let's implement R1 as the series combination of two 200Ω resistors. The power required to be dissipated by each of these resistors is $\frac{4^{2}}{200}=0.08 \mathrm{~W}<\frac{1}{8} \mathrm{~W}$
Now let's check the voltage:

$$
\begin{aligned}
11.88 \frac{190}{190+420} & <v_{0}<12.12 \frac{210}{210+380} \\
3.700 & <v_{0}<4.314 \\
4-7.5 \% & <v_{0}<4+7.85 \%
\end{aligned}
$$

Hence, $v_{o}=4 \mathrm{~V} \pm 8 \%$ and the design is complete.
DP 3-3

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{ab}} \cong 200 \mathrm{mV} \\
& \mathrm{v}=\frac{10}{10+\mathrm{R}} 120 \mathrm{~V}_{\mathrm{ab}}=\frac{10}{10+\mathrm{R}}(120)(.2) \\
& \text { let } \mathrm{v}=16=\frac{240}{10+\mathrm{R}} \Rightarrow \underline{\mathrm{R}=5 \Omega} \\
& \therefore \mathrm{P}=\frac{16^{2}}{10}=\underline{25.6 \mathrm{~W}}
\end{aligned}
$$

DP 3-4

$$
\begin{aligned}
\mathrm{i}= & \mathrm{G}_{\mathrm{T}} \mathrm{v}=\frac{\mathrm{N}}{\mathrm{R}} \mathrm{v} \\
& \text { where } \mathrm{G}_{\mathrm{T}}=\sum_{\mathrm{n}=1}^{\mathrm{N}} \frac{1}{\mathrm{R}_{\mathrm{n}}}=\mathrm{N}\left(\frac{1}{\mathrm{R}}\right) \\
\therefore \mathrm{N}= & \frac{\mathrm{iR}}{\mathrm{v}}=\frac{(9)(12)}{6}=\underline{18 \text { bulbs }}
\end{aligned}
$$

