Chapter 8 - The Complete Response of RL and RC Circuits

Exercises

Ex 8.3-1 Before the switch closes:

After the switch closes:

Therefore $R_{t}=\frac{2}{0.25}=8 \Omega \quad$ so $\quad \tau=8(0.05)=0.4 \mathrm{~s}$.
Finally, $v(t)=v_{o c}+\left(v(0)-v_{o c}\right) e^{-\frac{t}{\tau}}=2+e^{-2.5 t} \mathrm{~V}$ for $t>0$

Ex 8.3-2 Before the switch closes:

After the switch closes:

Therefore $R_{t}=\frac{2}{0.25}=8 \Omega \quad$ so $\quad \tau=\frac{6}{8}=0.75 \mathrm{~s}$.
Finally, $i(t)=i_{s c}+\left(i(0)-i_{s c}\right) e^{-\frac{t}{\tau}}=\frac{1}{4}+\frac{1}{12} e^{-1.33 t} \mathrm{~A}$ for $t>0$

Ex. 8.3-3 At steady-state before $t=0$:

After $t=0$, the Norton equivalent of the circuit connected to the inductor is found to be

\searrow becomes

so $\mathrm{I}_{\mathrm{sc}}=0.3 \mathrm{~A}, \mathrm{R}_{\mathrm{th}}=40 \Omega, \tau=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{th}}}=\frac{20}{40}=\frac{1}{2}$
Finally: $\quad i(t)=(0.1-0.3) e^{-2 t}+0.3=0.3-0.2 e^{-2 t} A$

Ex. 8.3-4 At steady-state for $\mathrm{t}<0$

After $t=0$, replace the circuit connected to the capacitor by its Thèvenin equivalent

so $\mathrm{V}_{\mathrm{oc}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{th}}=200 \Omega, \quad \tau=\mathrm{R}_{\mathrm{th}} \mathrm{C}=(200)\left(20 \cdot 10^{-6}\right)=4 \mathrm{~ms}$
Finally: $\quad v(t)=(12-12) e^{-\frac{t}{4}}+12=12 \mathrm{~V}$

Ex. 8.3-5 Before $t=0, i(t)=0$ so $I_{o}=0$
After $t=0$, replace the circuit connected to the inductor by its Norton equivalent

$$
\mathrm{I}_{\mathrm{sc}}=0.2 \mathrm{~A}, \mathrm{R}_{\mathrm{th}}=45 \Omega, \tau=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{th}}}=\frac{25}{45}=\frac{5}{9}
$$

So

Finally: $\quad v(t)=40 i(t)+25 \frac{d}{d t} i(t)=8\left(1-e^{-1.8 t}\right)+5(1.8) e^{-1.8 t}=8+e^{-1.8 t} V$

Ex. 8.3-6 $t<0$:

$t>0$: Replace the circuit connected to the inductor by its Norton equivalent to get

$$
\mathrm{I}_{\mathrm{sc}}=93.75 \mathrm{~mA}, \mathrm{R}_{\mathrm{th}}=640 \Omega, \mathrm{t}=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{th}}}=\frac{.1}{640}=\frac{1}{6400}
$$

So

Finally

$$
\mathrm{v}(\mathrm{t})=400 \mathrm{i}(\mathrm{t})+0.1 \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}(\mathrm{t})=400\left(.40625 \mathrm{e}^{-6400 \mathrm{t}}+.09375\right)+0.1(-6400)\left(0.40625 e^{-6400 \mathrm{t}}\right)=37.5-97.5 e^{-6400 \mathrm{t}} \mathrm{~V}
$$

Ex. 8.4-1

$$
\begin{aligned}
& \tau=\left(2 \cdot 10^{-3}\right)\left(1 \cdot 10^{-6}\right)=2 \cdot 10^{-3} \\
& \mathrm{v}_{\mathrm{c}}(\mathrm{t})=5+(1.5-5) \mathrm{e}^{-\frac{\mathrm{t}}{2}} \quad \text { where } \mathrm{t} \text { is in } \mathrm{ms} \\
& \mathrm{v}_{\mathrm{c}}(1)=5-3.5 \mathrm{e}^{-\frac{1}{2}}=2.88 \mathrm{~V}
\end{aligned}
$$

So $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$ will be equal to v_{T} at $\mathrm{t}=1 \mathrm{~ms}$ if $\mathrm{v}_{\mathrm{T}}=2.88 \mathrm{~V}$

Ex. 8.4-2

$$
\left.\begin{array}{l}
\mathrm{i}_{\mathrm{L}}(0)=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{sc}}=10 \mathrm{~mA} \\
\mathrm{R}_{\mathrm{th}}=500 \Omega, \tau=\frac{\mathrm{L}}{500}
\end{array}\right\} \Rightarrow \mathrm{i}_{\mathrm{L}}(\mathrm{t})=10-9 \mathrm{e}^{\frac{-500}{\mathrm{~L}} \mathrm{t}} \mathrm{~mA}
$$

We require that $\mathrm{v}_{\mathrm{R}}=1.5 \mathrm{~V}$ at $\mathrm{t}=10 \mathrm{~ms}=0.01 \mathrm{~s}$

That is

$$
\begin{aligned}
1.5 & =3-2.7 \mathrm{e}^{-\frac{500}{\mathrm{~L}}(0.01)} \\
\mathrm{e}^{-\frac{5}{\mathrm{~L}}} & =\frac{1.5-3}{-2.7}=0.555 \\
-\frac{5}{\mathrm{~L}} & =\ln (0.555)=-.588 \\
\mathrm{~L} & =\frac{5}{0.588}=8.5 \mathrm{H}
\end{aligned}
$$

Ex. 8.6-1 $\quad 0<\mathrm{t}^{2}<\mathrm{t}_{1}$

Now $\mathrm{v}\left(0^{-}\right)=\mathrm{v}\left(0^{+}\right)=0=1+\mathrm{A} \Rightarrow \mathrm{A}=-1 \underline{\therefore \mathrm{v}(\mathrm{t})=1-\mathrm{e}^{-10 \mathrm{t}} \mathrm{V}}$

$$
\underline{t>t_{1}}
$$

$$
\therefore \mathrm{v}(\mathrm{t})=.993 \mathrm{e}^{-10(\mathrm{t}-.5)} \mathrm{V}
$$

Ex. 8 6-2

$$
\begin{aligned}
& \mathrm{t}<0 \text { no sources } \therefore \mathrm{v}\left(0^{-}\right)=\mathrm{v}\left(0^{+}\right)=0 \\
& \underline{0<t<t_{1}} \\
& \text { where for } \mathrm{t}=\infty \text { (steady-state) } \\
& \therefore \text { capacitor becomes an open } \Rightarrow \mathrm{v}(\infty)=10 \mathrm{~V} \\
& \mathrm{v}(\mathrm{t})=10+\mathrm{Ae}^{-50 \mathrm{t}} \\
& \text { Now } \mathrm{v}(0)=0=10+\mathrm{A} \Rightarrow \mathrm{~A}=-10 \therefore \mathrm{v}(\mathrm{t})=10\left(1-\mathrm{e}^{-50 \mathrm{t}}\right) \mathrm{V} \\
& \underline{\mathrm{t}>\mathrm{t}_{1}}, \mathrm{t}_{1}=.1 \mathrm{~s} \\
& \mathrm{v}(\mathrm{t})=\mathrm{v}(.1) \mathrm{e}^{-50(\mathrm{t}-.1)} \\
& \text { where } \mathrm{v}(.1)=10\left(1-\mathrm{e}^{-50(.1)}\right)=9.93 \mathrm{~V} \\
& \therefore \mathrm{v}(\mathrm{t})=9.93 \mathrm{e}^{-50(\mathrm{t}-.1)} \mathrm{V}
\end{aligned}
$$

Ex. 8.6-3 for $\mathrm{t}<0 \quad \mathrm{i}=0$
$\underline{0<t<.2}$

$$
\left.\begin{array}{l}
\text { KCL: }-5+\mathrm{v} / 2+\mathrm{i}=0 \\
\quad \text { also: } \mathrm{v}=0.2 \frac{\mathrm{di}}{\mathrm{dt}}
\end{array}\right\} \frac{\mathrm{di}}{\mathrm{dt}}+10 \mathrm{i}=50 .
$$

so have $i(t)=5\left(1-e^{-10 t}\right) A$
$\mathrm{t}>.2$
$\mathrm{i}(.2)=4.32 \mathrm{~A} \quad \therefore \underline{\mathrm{i}(\mathrm{t})=4.32 \mathrm{e}^{-10(\mathrm{t}-.2)} \mathrm{A}}$

Ex. 8.7-1

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{s}}=10 \sin 20 \mathrm{t} \mathrm{~V} \\
& \text { KVL a: }-10 \sin 20 \mathrm{t}+10\left(.01 \frac{\mathrm{dv}}{\mathrm{dt}}\right)+\mathrm{v}=0 \Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}+10 \mathrm{v}=100 \sin 20 \mathrm{t}
\end{aligned}
$$

Natural response: $\mathrm{s}+10=0 \Rightarrow \mathrm{~s}=-10 \quad \therefore \mathrm{v}_{\mathrm{n}}(\mathrm{t})=\mathrm{Ae}^{-10 \mathrm{t}}$
Forced response: $\quad \operatorname{try} \mathrm{v}_{\mathrm{f}}(\mathrm{t})=\mathrm{B}_{1} \cos 20 \mathrm{t}+\mathrm{B}_{2} \sin 20 \mathrm{t}$
plugging $\mathrm{v}_{\mathrm{f}}(\mathrm{t})$ into the differential equation and equating like terms
yields: $\mathrm{B}_{1}=-40 \& \mathrm{~B}_{2}=20$
Complete response: $v(t)=v_{n}(t)+v_{f}(t)$

$$
\mathrm{v}(\mathrm{t})=\mathrm{Ae}^{-10 \mathrm{t}}-40 \cos 20 \mathrm{t}+20 \sin 20 \mathrm{t}
$$

Now $\mathrm{v}\left(0^{-}\right)=\mathrm{v}\left(0^{+}\right)=0=\mathrm{A}-40 \quad \therefore \mathrm{~A}=40$

$$
\therefore \mathrm{v}(\mathrm{t})=40 \mathrm{e}^{-10 \mathrm{t}}-40 \cos 20 \mathrm{t}+20 \sin 20 \mathrm{t} \mathrm{~V}
$$

Ex. 8.7-2

$i_{s}=10 \mathrm{e}^{-5 \mathrm{t}}$
KCL at top node: $-10 \mathrm{e}^{-5 \mathrm{t}}+\mathrm{i}+\mathrm{v} / 10=0$
Now $v=.1 \frac{\mathrm{di}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}+100 \mathrm{i}=1000 \mathrm{e}^{-5 \mathrm{t}}}$

Natural response: $\mathrm{s}+100=0 \Rightarrow \mathrm{~s}=-100 \therefore \mathrm{i}_{\mathrm{n}}(\mathrm{t})=\mathrm{Ae}^{-100 \mathrm{t}}$
Forced response: try $i_{f}(t)=B e^{-5 t} \&$ plug into D.E.

$$
\begin{aligned}
& \Rightarrow-5 \mathrm{Be}^{-5 \mathrm{t}}+100 \mathrm{Be}^{-5 \mathrm{t}}=1000 \mathrm{e}^{-5 \mathrm{t}} \\
& \Rightarrow \mathrm{~B}=10.53
\end{aligned}
$$

Complete response: $\mathrm{i}(\mathrm{t})=\mathrm{Ae}^{-100 t}+10.53 \mathrm{e}^{-5 \mathrm{t}}$
Now $i\left(0^{-}\right)=i\left(0^{+}\right)=0=A+10.53 \Rightarrow A=-10.53$

$$
\therefore \mathrm{i}(\mathrm{t})=10.53\left(\mathrm{e}^{-5 \mathrm{t}}-\mathrm{e}^{-100 \mathrm{t}}\right) \mathrm{A}
$$

Ex. 8.7-3

A current $\mathrm{i}_{\mathrm{L}}=\mathrm{v}_{\mathrm{s}} / 1$ flows in the inductor with the switch closed. When the switch opens, i_{L} cannot change instantaneously. Thus, the energy stored in the inductor dissipated in the spark. Add a resistor (say $1 \mathrm{k} \Omega$ across the switch terminals.)

Problems

Section 8.3: The Response of a First Order Circuit to a Constant Input
P8.3-1 We know that

where $I_{o}=i_{L}\left(t_{o}\right)$ and $\tau=\frac{L}{R_{T H}}$. In this problem $t_{o}=0$ and $I_{O}=i_{L}(0)=3 \mathrm{~mA}$.

The Norton equivalent of

is

So $\mathrm{R}_{\mathrm{th}}=1333 \Omega$ and $\mathrm{I}_{\mathrm{sc}}=5 \mathrm{~mA}$.
$\mathrm{L}=5 \mathrm{H}$ so $\tau=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{th}}}=\frac{5}{1333}=3.75 \mathrm{~ms}$
Finally $\quad i_{L}(t)=-2 e^{-\frac{t}{3.75}}+5 m A \quad t>0 \quad$ where t has units of m.

P8.3-2 We know that

In this problem, $\mathrm{t}_{0}=0$ and $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{c}}(0)=8 \mathrm{~V}$.

The Thèvenin equivalent of

so $\mathrm{R}_{\mathrm{th}}=1333$ and $\mathrm{V}_{\mathrm{oc}}=4 \mathrm{~V}$.
Next, $\mathrm{C}=0.5 \mu \mathrm{~F}$ so $\tau=\left(0.5 \cdot 10^{-6}\right) 1333=0.67 \mathrm{~ms}$
Finally

$$
\mathrm{v}_{\mathrm{c}}(\mathrm{t})=4 \mathrm{e}^{-\frac{\mathrm{t}}{-67}}+4 \mathrm{~V} \quad \text { where } \mathrm{t} \text { has units of } \mathrm{ms}
$$

P 8.3-3 Before the switch closes:

After the switch closes:

Therefore $R_{t}=\frac{-6}{-2}=3 \Omega$ so $\tau=3(0.05)=0.15 \mathrm{~s}$.
Finally, $v(t)=v_{o c}+\left(v(0)-v_{o c}\right) e^{-\frac{t}{\tau}}=-6+18 e^{-6.67 t} \mathrm{~V}$ for $t>0$

P 8.3-4 Before the switch closes:

After the switch closes:

Therefore $R_{t}=\frac{-6}{-2}=3 \Omega \quad$ so $\quad \tau=\frac{6}{3}=2 \mathrm{~s}$.
Finally, $i(t)=i_{s c}+\left(i(0)-i_{s c}\right) e^{-\frac{t}{\tau}}=-2+\frac{10}{3} e^{-0.5 t} \mathrm{~A} \quad$ for $t>0$

P8.3-5

Before the switch opens, $v_{o}(t)=0 \mathrm{~V} \Rightarrow v_{o}(0)=0 \mathrm{~V}$. After the switch opens the part of the circuit connected to the capacitor can be replaced by it's Thevenin equivalent circuit to get:

Therefore $\tau=\left(20 \times 10^{3}\right)\left(4 \times 10^{-6}\right)=0.08 \mathrm{~s}$.
Next, $v_{C}(t)=v_{o c}+\left(v(0)-v_{o c}\right) e^{-\frac{t}{\tau}}=10-10 e^{-12.5 t} \mathrm{~V}$ for $t>0$
Finally, $v_{0}(t)=v_{C}(t)=10-10 e^{-12.5 t} \mathrm{~V}$ for $t>0$

P8.3-6

Before the switch opens, $v_{o}(t)=0 \mathrm{~V} \Rightarrow v_{o}(0)=0 \mathrm{~V}$. After the switch opens the part of the circuit connected to the capacitor can be replaced by it's Norton equivalent circuit to get:

Therefore $\tau=\frac{5}{20 \times 10^{3}}=0.25 \mathrm{~ms}$.
Next, $i(t)=i_{s c}+\left(i(0)-i_{s c}\right) e^{-\frac{t}{\tau}}=0.5 \times 10^{-3}\left(1-e^{-4000 t}\right) \mathrm{A}$ for $t>0$
Finally, $v_{o}(t)=5 \frac{d}{d t} i_{L}(t)=10 e^{-4000 t} \mathrm{~V} \quad$ for $t>0$

P8.3-7 Since the input to this circuit is constant, the capacitor will act like an open circuit when the circuit is at steady-state:
$\mathrm{t}<0$

P8.3-8 Since the input to this circuit is constant, the inductor will act like a short circuit when the circuit is at steady-state:

P8.3-9 Since the input to this circuit is constant, the inductor will act like a short circuit when the circuit is at steady-state:
t < 0
$t>0$

P8.3-10
Since the input to this circuit is constant, the capacitor will act like an open circuit when the circuit is at steady-state:

P8.3-11
at $\mathrm{t}=0^{-} \quad$ (steady-state)

for $t>0$

$$
\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(0) \mathrm{e}^{-(\mathrm{R} / \mathrm{L}) \mathrm{t}}=6 \mathrm{e}^{-20 \mathrm{t}} \mathrm{~A}
$$

P8.3-12

Assume the capacitor is charged at $\mathrm{t}=5 \tau$, i.e., $\frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{V}_{\mathrm{c}_{\max }}}=1-\mathrm{e}^{-5}=.993$
Similarly, assume the capacitor is discharged when $\frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{V}_{\mathrm{c}_{\text {max }}}}=\mathrm{e}^{-5}=6.74 \times 10^{-3}$.
Now determine C from discharging condition
$\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{v}_{\mathrm{c}}\left(\mathrm{t}_{\mathrm{o}}\right) \mathrm{e}^{-\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right) / \mathrm{C} \mathrm{R}_{\text {bulb }}} \Rightarrow 6.74 \times 10^{-3}=\mathrm{e}^{-0.5 / \mathrm{CR}_{\text {bulb }}} \Rightarrow \mathrm{C}=10^{-5} \mathrm{~F}=10 \mu F$

Now determine a condition for R from charging circuit at the instant
$\mathrm{v}_{\mathrm{c}}=0 \Rightarrow \frac{6 \mathrm{~V}}{\mathrm{R}}<100 \times 10^{-6} \mathrm{~A} \Rightarrow \mathrm{R}>60 \mathrm{k} \Omega$
then for the charging ckt.

$$
\begin{aligned}
.993 & =1-\mathrm{e}^{-5 / \mathrm{RC}} \\
-4.96 & =-5 / \mathrm{RC} \Rightarrow \mathrm{R}=\frac{5}{(4.96)\left(10^{-5}\right)}=100.8 \mathrm{k} \Omega
\end{aligned}
$$

and see that $\mathrm{R} \simeq 100 \mathrm{k} \Omega>60 \mathrm{k} \Omega$.

P8.3-13 First, use source transformations to obtain the equivalent circuit

So $\mathrm{I}_{0}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{sc}}=0, \mathrm{R}_{\mathrm{th}}=3 \Omega+9 \Omega=12 \Omega, \tau=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{th}}}=\frac{\frac{1}{2}}{12}=\frac{1}{24}$
and $i_{L}(t)=2 e^{-24 t} \quad t>0$
Finally $v(t)=9 i_{L}(t)=18 e^{-24 t} \quad t>0$

P 8.3-14 Before the switch opens, $v_{C}(t)=0 \mathrm{~V} \Rightarrow v_{C}(0)=0 \mathrm{~V}$. After the switch opens:

Therefore $R_{t}=\frac{10}{0.5 \times 10^{-3}}=20 \mathrm{k} \Omega$ so $\tau=\left(20 \times 10^{3}\right)\left(4 \times 10^{-6}\right)=0.08 \mathrm{~s}$.
Next, $v_{C}(t)=v_{o c}+\left(v(0)-v_{o c}\right) e^{-\frac{t}{\tau}}=10-10 e^{-12.5 t} \mathrm{~V}$ for $t>0$
Finally, $v_{0}(t)=-v_{C}=-10+10 e^{-12.5 t} \mathrm{~V}$ for $t>0$

Section 8-4: Sequential Switching

P 8.4-1 Replace the part of the circuit connected to the capacitor by its Thevenin equivalent circuit to get:

Before the switch closes at $\mathrm{t}=0$ the circuit is at steady state so $v(0)=10 \mathrm{~V}$. For $0<t<1.5 \mathrm{~s}, v_{o c}=5 \mathrm{~V}$ and $R_{t}=4 \Omega$ so $\tau=4 \times 0.5=2 \mathrm{~s}$. Therefore

$$
v(t)=v_{o c}+\left(v(0)-v_{o c}\right) e^{-\frac{t}{\tau}}=5+5 e^{-0.5 t} \mathrm{~V} \quad \text { for } 0<t<1.5 \mathrm{~s}
$$

At $\mathrm{t}=1.5 \mathrm{~s}, v(1.5)=5+5 e^{-0.5(1.5)}=7.36 \mathrm{~V}$. For $1.5 \mathrm{~s}<t, v_{o c}=10 \mathrm{~V}$ and $R_{t}=8 \Omega$ so $\tau=8 \times 0.5=4 \mathrm{~s}$. Therefore

$$
v(t)=v_{o c}+\left(v(1.5)-v_{o c}\right) e^{-\frac{t-1.5}{\tau}}=10-2.34 e^{-0.25(t-1.5)} \mathrm{V} \quad \text { for } 1.5 \mathrm{~s}<t
$$

Finally

$$
v(t)=\left\{\begin{array}{cc}
5+5 e^{-0.5 t} \mathrm{~V} & \text { for } 0<t<1.5 \mathrm{~s} \\
10-2.34 e^{-0.25(t-1.5)} \mathrm{V} & \text { for } 1.5 \mathrm{~s}<t
\end{array}\right.
$$

P 8.4-2 Replace the part of the circuit connected to the inductor by its Norton equivalent circuit to get:

Before the switch closes at $\mathrm{t}=0$ the circuit is at steady state so $i(0)=3 \mathrm{~A}$. For $0<t<1.5 \mathrm{~s}, i_{s c}=2 \mathrm{~A}$ and $R_{t}=6 \Omega$ so $\tau=\frac{12}{6}=2 \mathrm{~s}$. Therefore

$$
i(t)=i_{s c}+\left(i(0)-i_{s c}\right) e^{-\frac{t}{\tau}}=2+e^{-0.5 t} \mathrm{~A} \quad \text { for } 0<t<1.5 \mathrm{~s}
$$

At $\mathrm{t}=1.5 \mathrm{~s}, i(1.5)=2+e^{-0.5(1.5)}=2.47 \mathrm{~A}$. For $1.5 \mathrm{~s}<t, i_{s c}=3 \mathrm{~A}$ and $R_{t}=8 \Omega$ so $\tau=\frac{12}{8}=1.5 \mathrm{~s}$. Therefore

$$
\begin{aligned}
& i(t)=i_{s c}+\left(i(1.5)-i_{s c}\right) e^{-\frac{t-1.5}{\tau}}=3-0.64 e^{-0.667(t-1.5)} \mathrm{V} \quad \text { for } 1.5 \mathrm{~s}<t \\
& i(t)=i_{s c}+\left(i(1.5)-i_{s c}\right) e^{-\frac{t-1.5}{\tau}}=3-0.64 e^{-0.667(t-1.5)} \mathrm{V} \quad \text { for } 1.5 \mathrm{~s}<t
\end{aligned}
$$

Finally

$$
i(t)=\left\{\begin{array}{cc}
2+e^{-0.5 t} \mathrm{~A} & \text { for } 0<t<1.5 \mathrm{~s} \\
3-0.64 e^{-0.667(t-1.5)} \mathrm{A} & \text { for } 1.5 \mathrm{~s}<t
\end{array}\right.
$$

P8.4-3
$\underline{t=0^{-}} \quad$ (steady-state)

t>51ms

$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(51 \mathrm{~ms}) \mathrm{e}^{-(\mathrm{R} / \mathrm{L})(\mathrm{t}-.051)}$
$\mathrm{i}_{\mathrm{L}}(51 \mathrm{~ms})=2 \mathrm{e}^{-6(.051)}=1.473$
$\underline{\mathrm{i}_{\mathrm{L}}(\mathrm{t})=1.473 \mathrm{e}^{-14(\mathrm{t}-.051)} \mathrm{A}}$

P8.4-4 $t=0^{-}$

Assume $\mathrm{V}_{1}=$ voltage across $10 \mu \mathrm{~F}$ capacitor $=3 \mathrm{~V}$
$0<\mathrm{t}<10 \mathrm{mS}$
With R negligibly small, we may assume a static steady-state situation is obtained in the circuit nearly instantaneously $\left(\mathrm{t}=0^{+}\right)$. Thus with both capacitors in parallel, the common voltage is obtained by considering charge conservation.

$$
\begin{gathered}
\text { at } \mathrm{t}=0^{-}, \mathrm{q}_{100 \mu \mathrm{~F}}=\mathrm{CV}=(100 \mu \mathrm{~F})(3 \mathrm{~V})=300 \mu \mathrm{C} \\
\mathrm{q}_{400 \mu \mathrm{~F}}=\mathrm{CV}=(400 \mu \mathrm{~F})(0)=0 \\
\mathrm{q}_{\mathrm{ToT}}=\mathrm{q}_{100}+\mathrm{q}_{400}=300 \mu \mathrm{C}
\end{gathered}
$$

at $t=0^{+}, \mathrm{q}_{100}+\mathrm{q}_{400}=300 \mu \mathrm{C}$
Now using $\mathrm{q}=\mathrm{CV} \Rightarrow(100 \mu \mathrm{~F})(\mathrm{V})+(400 \mu \mathrm{~F})(\mathrm{V})=300 \mu \mathrm{C} \Rightarrow \underline{\mathrm{V}=0.6 \mathrm{~V}}$

10 ms < t < ls
Combine $100 \mu \mathrm{~F} \& 400 \mu \mathrm{~F}$ in parallel to obtain

$$
\begin{aligned}
& 500 \mu F \underset{{ }^{\vee}}{{ }^{t}}\left\{R_{L}=1 \mathrm{k} \Omega \quad \text { with } \mathrm{V}(10 \mathrm{~ms})=0.6 \mathrm{~V}\right. \\
& \mathrm{v}(\mathrm{t})=\mathrm{V}(10 \mathrm{~ms}) \mathrm{e}^{-(\mathrm{t}-.01) / R C}=0.6 \mathrm{e}^{-(t-.01) /\left(10^{3}\right)\left(5 \times 10^{-4}\right)} \\
& \mathrm{v}(\mathrm{t})=0.6 \mathrm{e}^{-2(\mathrm{t}-.01)} \mathrm{V}
\end{aligned}
$$

P8.4-5

$\mathrm{V}_{\mathrm{oc}}=\mathrm{V}_{\mathrm{T}}=\left(40 \times \frac{20}{20+20}\right)-5 \mathrm{i}_{1}=20-5=\left(\frac{40}{40}\right)=\underline{15 \mathrm{~V}}$
for R_{T}, kill source with $\mathrm{V}=0$

Note $i_{1}=1 / 2 \mathrm{~A}$
$\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{v}_{0}}{1}=1(10 \Omega)-5\left(\frac{1}{2} \mathrm{~A}\right)=\underline{7.5 \Omega}$
$\underline{R_{\text {eq }}=7.5 \Omega}$

Forced response

15 v

$$
\begin{aligned}
i & =2 \mathrm{~A} \\
\tau & =\mathrm{L} / \mathrm{R}=\frac{15 \times 10^{-3}}{7.5}=2 \mathrm{~ms}
\end{aligned}
$$

natural: $\mathrm{i}=\mathrm{Be}^{-\mathrm{t} / \tau}=\mathrm{Be}^{-500 \mathrm{t}}$
total : $\mathrm{i}=\mathrm{Be}^{-500 \mathrm{t}}+2$ now $\mathrm{i}(0)=0 \Rightarrow \mathrm{~B}=-2$

$$
\mathrm{i}(\mathrm{t})=2\left(1-\mathrm{e}^{-500 \mathrm{t}}\right) \mathrm{A}
$$

time to 99% :
for $\mathrm{e}^{-500 \mathrm{t}}=.01$ or $500 \mathrm{t}=4.605 \Rightarrow \mathrm{t}=9.2 \mathrm{~ms}$

P8.4-6

$$
\begin{aligned}
& \left.\begin{array}{l}
\tau=\mathrm{RC}=10^{5} \times 10^{-6}=.1 \mathrm{~s} \\
\mathrm{v}_{\mathrm{c}}(0)=5 \mathrm{~V}
\end{array}\right\} \Rightarrow \mathrm{v}_{\mathrm{c}}(\mathrm{t})=5 \mathrm{e}^{-\mathrm{t} / \tau} \\
& \begin{array}{l}
\text { Now } 5 / 2=\mathrm{v}_{\mathrm{c}}\left(\mathrm{t}_{1}\right)=5 \mathrm{e}^{-\mathrm{t}_{1} / \tau} \\
\mathrm{e}^{-\mathrm{t}_{1} / \tau}=.5 \Rightarrow \underline{\mathrm{t}_{1}}=.0693 \mathrm{~s} \\
\mathrm{i}\left(\mathrm{t}_{1}\right)=\frac{\mathrm{v}\left(\mathrm{t}_{1}\right)}{100 \mathrm{k} \Omega} \quad=\frac{5 / 2}{10^{5}}=\underline{25 \mu \mathrm{~A}}
\end{array} .
\end{aligned}
$$

P8.4-7

$\underline{t=0^{-}}$(stead y-state)

$$
\mathrm{v}\left(0^{-}\right)=\mathrm{v}\left(0^{+}\right)=(2 \mathrm{~A})(5 \Omega)=10 \mathrm{~V}
$$

$\underline{0<\mathrm{t}<100 \mathrm{~ms}}$

$$
\begin{aligned}
& \mathrm{v}(\mathrm{t})=\mathrm{v}(0) \mathrm{e}^{-\mathrm{t} / \mathrm{RC}} \\
& \mathrm{v}(\mathrm{t})=10 \mathrm{e}^{-\mathrm{t} /(5)(.01)}=10 \mathrm{e}^{-20 \mathrm{t}} \mathrm{~V}
\end{aligned}
$$

$t>100 \mathrm{~ms}$

$$
10 \mathrm{~m} F \underset{{ }_{-}^{+}}{\stackrel{\rightharpoonup}{-}}\{20 / / 5=4 \Omega
$$

$v(t)=v(100 \mathrm{~ms}) e^{-\frac{(\mathrm{t}-1)}{(4)(.01)}}$
$\mathrm{v}(100 \mathrm{~ms})=10 \mathrm{e}^{-20(.1)}=1.35 \mathrm{~V}$
$\therefore \mathrm{v}(\mathrm{t})=1.35 \mathrm{e}^{-25(\mathrm{t}-.1)} \mathrm{V}$

P8.4-8

$$
\begin{aligned}
& \underline{t=0^{-}}(\text {steady-state }) \quad i_{2}=\frac{1}{1+4+2+1} 7=\frac{7}{8} A \\
& \mathrm{v}_{\mathrm{c}}\left(0^{-}\right)=\mathrm{v}_{\mathrm{c}}\left(0^{+}\right)=2 \mathrm{i}_{2}=7 / 4 \mathrm{~V}
\end{aligned}
$$

$0<\mathrm{t}<.35$ Closing the rightmost switch shorts out 1Ω in parallel with 7A source and isolates 7A source leaving

KCL at $\mathrm{a}: \frac{-\mathrm{v}_{\mathrm{x}}}{4}+5 \mathrm{i}_{\mathrm{c}}+\mathrm{i}_{\mathrm{c}}+\frac{\mathrm{v}_{\mathrm{c}}}{2}=0$ (1)
KCL at $\mathrm{b}: \frac{\mathrm{v}_{\mathrm{x}}}{4}-5_{\mathrm{ic}}+\frac{\mathrm{v}_{\mathrm{c}}+\mathrm{v}_{\mathrm{x}}}{1}=0$ (2)
also: $\mathrm{i}_{\mathrm{c}}=.2^{\mathrm{dV}_{\mathrm{c}}} / \mathrm{dt}$

Plugging (3) into (1) \& (2) \& then eliminating v_{c} yields $\Rightarrow \frac{\mathrm{d} \mathrm{v}_{\mathrm{c}}}{\mathrm{dt}}+\frac{7}{10} \mathrm{v}_{\mathrm{c}}=0$
So $\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{v}_{\mathrm{c}}(0) \mathrm{e}^{-0.7 \mathrm{t}}=\underline{7 / 4 \mathrm{e}^{-0.7 \mathrm{t}}}, \quad \mathrm{i}_{\mathrm{c}}=.2 \frac{\mathrm{dv}_{\mathrm{c}}}{\mathrm{dt}}=-.245 \mathrm{e}^{-.7 \mathrm{t}}$
So from (1) we have $\mathrm{v}_{\mathrm{x}}(\mathrm{t})=24 \mathrm{i}_{\mathrm{c}}+2 \mathrm{v}_{\mathrm{c}}=\underline{-2.38 \mathrm{e}^{-.7 \mathrm{t}}}$
$t>.35$

$$
\begin{align*}
& \mathrm{v}_{\mathrm{c}}(.35)=7 / 4 \mathrm{e}^{-(0.7)(.35)}=1.37 \mathrm{~V} \\
& \quad \text { now }=\underline{\mathrm{v}_{\mathrm{x}}=-\mathrm{v}_{\mathrm{c}}} \\
& \mathrm{KCL}: \mathrm{v}_{\mathrm{c}} / 4+5 \mathrm{i}_{\mathrm{c}}+\mathrm{v}_{\mathrm{c}} / 2+\mathrm{i}_{\mathrm{c}}=0 \tag{1}\\
& \text { also : } \mathrm{i}_{\mathrm{c}}=0.2^{\mathrm{dV}_{c} / \mathrm{dt}} \tag{2}
\end{align*}
$$

From (1) \& (2) $\Rightarrow d v_{c} / \mathrm{dt}+5 / 8 v_{c}=0 \Rightarrow \mathrm{v}_{\mathrm{c}}(t)=\mathrm{v}_{\mathrm{c}}(.35) e^{-(t-.35) 5 / 8}=\underline{-1.37 \mathrm{e}^{-.625(\mathrm{t}-.35)}}$

Section 8-5: Stability of First Order Circuits

P8.5-1 This circuit will be stable if the Thèvenin equivalent resistance of the circuit connected to the inductor is positive.

Then $R_{t h}>0$ requires $R_{2}>R$. In this case $R_{2}=400 \Omega$ so $400>R$ is required to guarantee stability.

P8.5-2 The Thèvenin equivalent resistance of the circuit connected to the inductor is calculated as

The circuit will be stable when $\mathrm{R}_{\mathrm{th}}>0$, that is,
$\mathrm{R}_{\mathrm{th}}>0 \Rightarrow \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}>\mathrm{A}$
When $\mathrm{R}_{1}=4 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=1 \mathrm{k} \Omega$, then $\mathrm{A}<5$ is required to guarantee stability.

P8.5-3 The Thèvenin equivalent resistance of the circuit connected to the inductor is calculated as

$$
\begin{aligned}
\mathrm{V}_{\mathrm{T}} & =-\mathrm{R}_{1} \mathrm{i}(\mathrm{t})=\mathrm{R}_{2}\left(\mathrm{i}(\mathrm{t})+\mathrm{Bi}(\mathrm{t})+\mathrm{I}_{\mathrm{T}}\right) \\
\mathrm{i}(\mathrm{t}) & =\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{2} B} \mathrm{I}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}} & =-\mathrm{R}_{1} \frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{2} B} I_{T} \\
\mathrm{R}_{\mathrm{th}} & =\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{2} B}
\end{aligned}
$$

The circuit is stable when $R_{t h}>0$, that is

$$
\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{2} \mathrm{~B}>0 \Rightarrow \mathrm{~B}>-\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}}
$$

when $\mathrm{R}_{1}=6 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=3 \mathrm{k} \Omega, \mathrm{B}>-3$ is required to guarantee stability.

P8.5-4 The Thèvenin equivalent resistance of the circuit connected to the inductor is calculated as

$$
\left.\begin{array}{rl}
\mathrm{v}(\mathrm{t}) & =\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{I}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}} & =\mathrm{v}(\mathrm{t})-\operatorname{Av}(\mathrm{t})
\end{array}\right\} \mathrm{R}_{\mathrm{th}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}(1-\mathrm{A})
$$

The circuit will be stable when $\mathrm{R}_{\mathrm{th}}>0$, that is, when $\mathrm{A}<1$.

Section 8-6: The Unit Step Response

P8.6-1

$$
10 u(t)-4= \begin{cases}10(0)-4=-4 & t<0 \\ 10(1)-4=6 & t>0\end{cases}
$$

P8.6-2

$$
6 u(-t)+4 u(t)= \begin{cases}6(1)+4(0)=6 & t<0 \\ 6(0)+4(1)=4 & t>0\end{cases}
$$

$$
\mathrm{t}<0
$$

$\mathrm{t}>0$:
$2 k \Omega$

