Chapter 12: Three-Phase Circuits

Exercises

Ex. 12.3-1

$$
\mathrm{V}_{\mathrm{C}}=120 \angle-240^{\circ} \text { so } \mathrm{V}_{\mathrm{A}}=120 \angle 0^{\circ} \text { and } \mathrm{V}_{\mathrm{B}}=120 \angle-120^{\circ}
$$

Ex. 12.4-1
Four-wire Y-to-Y Circuit

Mathcad analysis

Describe the three-phase source: $\quad \mathrm{Va}:=120 \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot \mathrm{o}} \quad \mathrm{Vb}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot-120} \quad \mathrm{Vc}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}$
Describe the three-phase load:
ZA $:=80+\mathrm{j} \cdot 50$
ZB := $80+\mathrm{j} \cdot 80$
ZC := $100-\mathrm{j} \cdot 25$
Calculate the line currents:
$\mathrm{IaA}:=\frac{\mathrm{Va}}{\mathrm{ZA}}$
$\mathrm{IbB}:=\frac{\mathrm{Vb}}{\mathrm{ZB}}$
IcC: $=\frac{\mathrm{Vc}}{\mathrm{ZC}}$
$\mathrm{IaA}=1.079-0.674 \mathrm{i}$
$|\mathrm{IaA}|=1.272$
$\mathrm{IbB}=-1.025-0.275 \mathrm{i}$
$|\mathrm{IbB}|=1.061$
IcC $=-0.809+0.837 \mathrm{i}$
$|\mathrm{IcC}|=1.164$
$\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-32.005 \quad \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=-165$
$\frac{180}{\pi} \cdot \arg (\mathrm{IcC})=-134.036$

Calculate the current in the neutral wire: $\quad \mathrm{INn}:=\mathrm{IaA}+\mathrm{IbB}+\mathrm{IcC}$

$$
\mathrm{INn}=-0.755-0.112 \mathrm{i}
$$

Calculate the power delivered to the load:
SA $:=\overline{\mathrm{IaA}} \cdot \mathrm{Va}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{Vb}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{Vc}$
$\mathrm{SA}=129.438+80.899 \mathrm{i}$
$\mathrm{SB}=90+90 \mathrm{i}$
SC $=135.529-33.883 \mathrm{i}$
$\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=354.968+137.017 \mathrm{i}$

Ex. 12.4-2

Four-wire Y-to-Y Circuit

Mathcad analysis

Describe the three-phase source:

$$
\mathrm{Va}:=120 \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 0}
$$

$\mathrm{Vb}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot-120}$
$\mathrm{Vc}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}$
Describe the three-phase load:
$\mathrm{ZA}:=40+\mathrm{j} \cdot 30$
$\mathrm{ZB}:=\mathrm{ZA}$
$\mathrm{ZC}:=\mathrm{ZA}$
Calculate the line currents:
$\mathrm{IaA}:=\frac{\mathrm{Va}}{\mathrm{ZA}}$
$\mathrm{IbB}:=\frac{\mathrm{Vb}}{\mathrm{ZB}}$
IcC: $=\frac{\mathrm{Vc}}{\mathrm{ZC}}$
$\mathrm{IaA}=1.92-1.44 \mathrm{i}$
$\mathrm{IbB}=-2.207-0.943 \mathrm{i}$
$\mathrm{IcC}=0.287+2.383 \mathrm{i}$
$|\mathrm{IaA}|=2.4$
$|\mathrm{IbB}|=2.4$
$|\mathrm{IcC}|=2.4$
$\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-36.87$
$\frac{180}{\pi} \cdot \arg (\mathrm{IbB})=-156.87$
$\frac{180}{\pi} \cdot \arg ($ IcC $)=83.13$

Calculate the current in the neutral wire:

$$
\mathrm{INn}:=\mathrm{IaA}+\mathrm{IbB}+\mathrm{IcC} \quad \mathrm{INn}=0
$$

Calculate the power delivered to the load:
$\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{Va}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{Vb}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{Vc}$
$\mathrm{SA}=230.4+172.8 \mathrm{i}$
$\mathrm{SB}=230.4+172.8 \mathrm{i}$
$\mathrm{SC}=230.4+172.8 \mathrm{i}$
$\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=691.2+518.4 \mathrm{i}$

Ex. 12.4-3
Three-wire Y-to-Y Circuit with line impedances

Mathcad analysis

Describe the three-phase source: $\quad \mathrm{Vp}:=120$

$$
\mathrm{Va}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 0} \quad \mathrm{Vb}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot-120} \quad \mathrm{Vc}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}
$$

Describe the three-phase load: \quad ZA $:=80+j \cdot 50 \quad$ ZB $:=80+j \cdot 80 \quad$ ZC $:=100-\mathrm{j} \cdot 25$

Describe the three-phase line: $\quad \mathrm{ZaA}:=0 \quad \mathrm{ZbB}:=0 \quad \mathrm{ZcC}:=0$
Calculate the voltage at the neutral of the load with respect to the neutral of the source:

$$
\begin{aligned}
& \mathrm{VnN}:= \frac{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{4}{3} \cdot \pi}+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{2}{3} \cdot \pi}+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})}{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC})+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB})+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})} \cdot \mathrm{Vp} \\
& \mathrm{VnN}=-25.137-14.236 \mathrm{i} \quad|\mathrm{VnN}|=28.888 \quad \frac{180}{\pi} \cdot \arg (\mathrm{VnN})=-150.475
\end{aligned}
$$

Calculate the line currents: $\quad \mathrm{IaA}:=\frac{\mathrm{Va}-\mathrm{VnN}}{\mathrm{ZA}+\mathrm{ZaA}} \quad \mathrm{IbB}:=\frac{\mathrm{Vb}-\mathrm{VnN}}{\mathrm{ZB}+\mathrm{ZbB}} \quad \mathrm{IcC}:=\frac{\mathrm{Vc}-\mathrm{VnN}}{\mathrm{ZC}+\mathrm{ZcC}}$

$$
\begin{array}{lll}
\mathrm{IaA}=1.385-0.687 \mathrm{i} & \mathrm{IbB}=-0.778-0.343 \mathrm{i} & \mathrm{IcC}=-0.606+1.03 \mathrm{i} \\
|\mathrm{IaA}|=1.546 & |\mathrm{IbB}|=0.851 & |\mathrm{IcC}|=1.195 \\
\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-26.403 & \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=-156.242 & \frac{180}{\pi} \cdot \arg (\mathrm{IcC})=120.475
\end{array}
$$

Calculate the power delivered to the load:
$\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{IaA} \cdot \mathrm{ZA}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{IbB} \cdot \mathrm{ZB}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{IcC} \cdot \mathrm{ZC}$
$\mathrm{SA}=191.168+119.48 \mathrm{i}$
$\mathrm{SB}=57.87+57.87 \mathrm{i}$
$\mathrm{SC}=142.843-35.711 \mathrm{i}$
$\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=391.88+141.639 \mathrm{i}$

Ex. 12.4-4

Mathcad analysis

Describe the three-phase source: $\quad \mathrm{Vp}:=120$
$\mathrm{Va}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 0} \quad \mathrm{Vb}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot-120} \quad \mathrm{Vc}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}$
Describe the three-phase load: $\mathrm{ZA}:=40+\mathrm{j} \cdot 30 \quad \mathrm{ZB}:=\mathrm{ZA} \quad \mathrm{ZC}:=\mathrm{ZB}$

Describe the three-phase line: $\mathrm{ZaA}:=0 \quad \mathrm{ZbB}:=0 \quad \mathrm{ZcC}:=0$

Calculate the voltage at the neutral of the load with respect to the neutral of the source:
$\mathrm{VnN}:=\frac{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{4}{3} \cdot \pi}+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{2}{3} \cdot \pi}+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})}{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC})+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB})+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})} \cdot \mathrm{Vp}$

$$
\mathrm{VnN}=-4.075 \cdot 10^{-15}+1.397 \cdot 10^{-14} \mathrm{i} \quad|\mathrm{VnN}|=1.455 \cdot 10^{-14} \quad \frac{180}{\pi} \cdot \arg (\mathrm{VnN})=106.26
$$

Calculate the line currents: $\quad \mathrm{IaA}:=\frac{\mathrm{Va}-\mathrm{VnN}}{\mathrm{ZA}+\mathrm{ZaA}} \quad \mathrm{IbB}:=\frac{\mathrm{Vb}-\mathrm{VnN}}{\mathrm{ZB}+\mathrm{ZbB}} \quad \mathrm{IcC}:=\frac{\mathrm{Vc}-\mathrm{VnN}}{\mathrm{ZC}+\mathrm{ZcC}}$

$$
\begin{array}{lll}
\mathrm{IaA}=1.92-1.44 \mathrm{i} & \mathrm{IbB}=-2.207-0.943 \mathrm{i} & \mathrm{IcC}=0.287+2.383 \mathrm{i} \\
|\mathrm{IaA}|=2.4 & |\mathrm{IbB}|=2.4 & |\mathrm{IcC}|=2.4 \\
\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-36.87 & \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=-156.87 & \frac{180}{\pi} \cdot \arg (\mathrm{IcC})=83.13
\end{array}
$$

Calculate the power delivered to the load:

$$
\begin{array}{lll}
\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{IaA} \cdot \mathrm{ZA} & \mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{IbB} \cdot \mathrm{ZB} & \mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{IcC} \cdot \mathrm{ZC} \\
\mathrm{SA}=230.4+172.8 \mathrm{i} & \mathrm{SB}=230.4+172.8 \mathrm{i} & \mathrm{SC}=230.4+172.8 \mathrm{i}
\end{array}
$$

$$
\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=691.2+518.4 \mathrm{i}
$$

Ex. 12.6-1

balanced

(See Table 12.5-1) $\mathrm{Z}_{\Delta}=180 \angle-45^{\circ}$

$$
\begin{aligned}
& \text { phase currents: } \\
& \mathrm{I}_{\mathrm{AB}}=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{Z}}=\frac{360 \angle 0^{\circ}}{180 \angle-45^{\circ}}=2 \angle 45^{\circ} \mathrm{A} \\
& \mathrm{I}_{\mathrm{BC}}=\frac{\mathrm{V}_{\mathrm{BC}}}{\mathrm{Z}}=\frac{360 \angle-120^{\circ}}{18 \angle-45^{\circ}}=2 \angle-75^{\circ} \mathrm{A} \\
& \mathrm{I}_{\mathrm{CA}}
\end{aligned}=\frac{\mathrm{V}_{\mathrm{CA}}}{\mathrm{Z}}=\frac{360 \angle 120^{\circ}}{180 \angle-45^{\circ}}=2 \angle 165^{\circ} \mathrm{A}
$$

line currents: $\quad \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{AB}}-\mathrm{I}_{\mathrm{CA}}=2 \angle 45^{\circ}-2 \angle 165^{\circ}=2 \sqrt{3} \angle 15^{\circ} \mathrm{A}$

$$
\mathrm{I}_{\mathrm{B}}=2 \sqrt{3} \angle-105^{\circ} \mathrm{A}
$$

$$
\mathrm{I}_{\mathrm{C}}=2 \sqrt{3} \angle 135^{\circ} \mathrm{A}
$$

Ex. 12.7-1 and Ex. 12.8-1 Three-wire Y-to-Delta Circuit with line impedances

Mathcad analysis

Describe the three-phase source: $\quad \mathrm{Vp}:=110$

$$
\mathrm{Va}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 0} \quad \mathrm{Vb}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot-120} \quad \mathrm{Vc}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}
$$

Describe the delta-connected load: $\quad \mathrm{Z} 1:=150+\mathrm{j} \cdot 270 \quad \mathrm{Z} 2:=\mathrm{Z} 1 \quad \mathrm{Z} 3:=\mathrm{Z} 1$
Convert the delta load to the equivalent Y load:

$$
\mathrm{ZA}:=\frac{\mathrm{Z} 1 \cdot \mathrm{Z3}}{\mathrm{Z} 1+\mathrm{Z} 2+\mathrm{Z} 3} \quad \mathrm{ZB}:=\frac{\mathrm{Z} 2 \cdot \mathrm{Z} 3}{\mathrm{Z} 1+\mathrm{Z} 2+\mathrm{Z3}} \quad \mathrm{ZC}:=\frac{\mathrm{Z} 1 \cdot \mathrm{Z} 2}{\mathrm{Z} 1+\mathrm{Z} 2+\mathrm{Z} 3}
$$

- ZA $=50+90 \mathrm{i} \quad \mathrm{ZB}:=50+90 \mathrm{i} \quad \mathrm{ZC}=50+90 \mathrm{i}$

Describe the three-phase line: $\quad \mathrm{ZaA}:=10+\mathrm{j} \cdot 25 \quad \mathrm{ZbB}:=\mathrm{ZaA} \quad \mathrm{ZcC}:=\mathrm{ZaA}$

Calculate the voltage at the neutral of the load with respect to the neutral of the source:
$\mathrm{VnN}:=\frac{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{4}{3} \cdot \pi}+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{2}{3} \cdot \pi}+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})}{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC})+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB})+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})} \cdot \mathrm{Vp}$

$$
\mathrm{VnN}=-4.235 \cdot 10^{-15}+7.787 \cdot|\mathrm{VnN}|=8.864 \cdot 10^{-15} \quad \frac{180}{\pi} \cdot \arg (\mathrm{VnN})=118.541
$$

Calculate the line currents: $\quad \mathrm{IaA}:=\frac{\mathrm{Va}-\mathrm{VnN}}{\mathrm{ZA}+\mathrm{ZaA}} \quad \mathrm{IbB}:=\frac{\mathrm{Vb}-\mathrm{VnN}}{\mathrm{ZB}+\mathrm{ZbB}} \quad \mathrm{IcC}:=\frac{\mathrm{Vc}-\mathrm{VnN}}{\mathrm{ZC}+\mathrm{ZcC}}$

$$
\begin{array}{lll}
\mathrm{IaA}=0.392-0.752 \mathrm{i} & \mathrm{IbB}=-0.847+0.036 \mathrm{i} & \mathrm{IcC}=0.455+0.716 \mathrm{i} \\
|\mathrm{IaA}|=0.848 & |\mathrm{IbB}|=0.848 & |\mathrm{IcC}|=0.848 \\
\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-62.447 & \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=177.553 & \frac{180}{\pi} \cdot \arg (\mathrm{IcC})=57.553
\end{array}
$$

Calculate the phase voltages of the Y-connected load:

$\mathrm{VAN}:=\mathrm{IaA} \cdot \mathrm{ZA}$	$\mathrm{VBN}:=\mathrm{IbB} \cdot \mathrm{ZB}$	$\mathrm{VCN}:=\mathrm{IcC} \cdot \mathrm{ZC}$
$\|\mathrm{VAN}\|=87.311$	$\|\mathrm{VBN}\|=87.311$	$\|\mathrm{VCN}\|=87.311$
$\frac{180}{\pi} \cdot \arg (\mathrm{VAN})=-1.502$	$\frac{180}{\pi} \cdot \arg (\mathrm{VBN})=-121.502$	$\frac{180}{\pi} \cdot \arg (\mathrm{VCN})=118.498$

Calculate the line-to-line voltages at the load:

$\mathrm{VAB}:=\mathrm{VAN}-\mathrm{VBN}$	$\mathrm{VBC}:=\mathrm{VBN}-\mathrm{VCN}$	$\mathrm{VCA}:=\mathrm{VCN}-\mathrm{VAN}$
$\|\mathrm{VAB}\|=151.227$	$\|\mathrm{VBC}\|=151.227$	$\|\mathrm{VCA}\|=151.227$
$\frac{180}{\pi} \cdot \arg (\mathrm{VAB})=28.498$	$\frac{180}{\pi} \cdot \arg (\mathrm{VBC})=-91.502$	$\frac{180}{\pi} \cdot \arg (\mathrm{VCA})=148.49$

Calculate the phase currents of the Δ-connected load:
$\mathrm{IAB}:=\frac{\mathrm{VAB}}{\mathrm{Z} 3}$
$\mathrm{IBC}:=\frac{\mathrm{VBC}}{\mathrm{Z} 1}$
$|\mathrm{IAB}|=0.49$
$|\mathrm{IBC}|=0.49$
$\frac{180}{\pi} \cdot \arg (\mathrm{IAB})=-32.447$
$\frac{180}{\pi} \cdot \arg ($ IBC $)=-152.447$
ICA: $=\frac{\mathrm{VCA}}{\mathrm{Z} 2}$
$|\mathrm{ICA}|=0.49$
$\frac{180}{\pi} \cdot \arg ($ ICA $)=87.55$

Calculate the power delivered to the load:
$\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{IaA} \cdot \mathrm{ZA}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{IbB} \cdot \mathrm{ZB}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{IcC} \cdot \mathrm{ZC}$
$\mathrm{SA}=35.958+64.725 \mathrm{i}$
$\mathrm{SB}=35.958+64.725 \mathrm{i}$
$\mathrm{SC}=35.958+64.725 \mathrm{i}$
$S A+S B+S C=107.875+194.175 i$

Ex. 12.9-1

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{V}_{\mathrm{AB}} \mathrm{I}_{\mathrm{A}} \cos \left(\theta+30^{\circ}\right)+\mathrm{V}_{\mathrm{CB}} \mathrm{I}_{\mathrm{C}} \cos \left(\theta-30^{\circ}\right)=\mathrm{P}_{1}+\mathrm{P}_{2} \\
& \mathrm{pf}=.4 \text { lagging } \Rightarrow \theta=61.97^{\circ} \\
& \text { So } \mathrm{P}_{\mathrm{T}}=450(24)\left[\cos 91.97^{\circ}+\cos 31.97^{\circ}\right]=8791 \mathrm{~W} \\
& \therefore \mathrm{P}_{1}=-371 \mathrm{~W} \mathrm{P}_{2}=9162 \mathrm{~W}
\end{aligned}
$$

Ex. 12.9-2
See Fig. 12.9-1

$$
P_{1}=60 \mathrm{~kW} \quad P_{2}=40 \mathrm{~kW}
$$

a) $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}=100 \mathrm{~kW}$
b) use eqn. 12.9-7

$$
\begin{gathered}
\tan \theta=\sqrt{3} \frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{2}}=\sqrt{3} \frac{40-60}{100}=-.346 \\
\therefore \theta=-19.11^{\circ} \\
\text { so } \mathrm{pf}=\cos (-19.110)=\underline{0.945} \text { leading }
\end{gathered}
$$

Problems

Section 12-3: Three Phase Voltages

P12.3-1

Given $\mathrm{V}_{\mathrm{C}}=277 \angle 45^{\circ}$
ABC reference $\quad \mathrm{V}_{\mathrm{A}}=277 \angle .75^{\circ}$
$\mathrm{V}_{\mathrm{B}}=277 \angle 45^{\circ}+120^{\circ}=277 \angle 165^{\circ}$
$\mathrm{V}_{\mathrm{L}}=\sqrt{3}(277)=480 \mathrm{~V}$
$\mathrm{V}_{\mathrm{ab}}=480 \angle-75^{\circ}+30^{\circ}=480 \angle-45^{\circ}$
$\mathrm{V}_{\mathrm{bc}}=480 \angle-165^{\circ}$
$\mathrm{V}_{\mathrm{ca}}=480 \angle 75^{\circ}$

P12.3-2

$$
\begin{aligned}
& \mathrm{V}_{1}=12470 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{p}}=\frac{12470}{\sqrt{3}}=7200 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{BA}}=12470 \angle-35^{\circ} \\
& \mathrm{V}_{\mathrm{b}}=\frac{12470}{\sqrt{3}} \angle\left(-35^{\circ}+30^{\circ}\right)=7200 \angle-5^{\circ} \mathrm{V} \\
& \mathrm{~V}_{\mathrm{a}}=7200 \angle\left(-5^{\circ}+120^{\circ}\right)=7200 \angle-115^{\circ} \\
& \mathrm{V}_{\mathrm{c}}=7200 \angle\left(-5^{\circ}-120^{\circ}\right)=7200 \angle-125^{\circ}
\end{aligned}
$$

P12.3-3 $\quad \mathrm{V}_{\mathrm{ab}}=1500 \angle 30^{\circ}=\mathrm{V}_{\mathrm{L}}$

$$
\mathrm{V}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}} \angle\left(\theta-30^{\circ}\right)=\frac{1500}{\sqrt{3}} \angle\left(30^{\circ}-30^{\circ}\right)=\underline{866 \angle 0^{\circ} \mathrm{V}}
$$

Section 12-4: The Y-to-Y Circuit

P12.4-1 $\quad \mathrm{V}_{\mathrm{L}}=208 \mathrm{~V} \quad$ balanced Y load, $\mathrm{Z}=12 \angle 30^{\circ} 12 \angle \theta$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{a}} & =\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{Z}}=\frac{120 \angle 0^{\circ}}{12 \angle 30^{\circ}}=10 \angle-30^{\circ} \\
\mathrm{I}_{\mathrm{b}} & =10 \angle\left(-30^{\circ}-120^{\circ}\right)=10 \angle-150^{\circ} \\
\mathrm{I}_{\mathrm{c}} & =10 \angle 90^{\circ} \\
\mathrm{P} & =\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta \\
& =\sqrt{3}(120)(10) \cos 30^{\circ}=\underline{1800 \mathrm{~W}}
\end{aligned}
$$

P12.4-2

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{1}=10+\mathrm{j} \omega 100+2=12+\mathrm{j} 37.7 \\
& \mathrm{~V}_{\mathrm{p}}=120 \mathrm{~V} \therefore \mathrm{~V}_{\mathrm{L}}=120 \sqrt{3} \quad \text { so } \mathrm{V}_{\mathrm{A}}=208 \angle 0^{\circ} \\
& \mathrm{V}_{\mathrm{B}}=208 \angle-120^{\circ} \\
& \mathrm{V}_{\mathrm{C}}=208 \angle+120^{\circ} \\
& \begin{array}{r}
\mathrm{I}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{Z}_{\mathrm{T}}}=\frac{120 \angle 0^{\circ}}{12+\mathrm{j} 37.7}=\frac{120 \angle 0^{\circ}}{40 \angle 72^{\circ}}=3 \angle-72^{\circ}=\mathrm{I}_{\mathrm{A}} \\
\mathrm{I}_{\mathrm{B}}=3 \angle-192^{\circ} \\
\mathrm{I}_{\mathrm{C}}=3 \angle 48^{\circ}
\end{array}
\end{aligned}
$$

P12.4-3

a) look @ one phase

$$
\begin{aligned}
\mathrm{v}(\mathrm{t}) & =10 \cos \left(16 \mathrm{t}-120^{\circ}\right) \\
& =\mathrm{V}_{\mathrm{p}} \cos (\omega \mathrm{t}+\theta)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{P}} \angle \theta_{\mathrm{V}}=10 \angle-120^{\circ}$
$Z_{A}=j \omega L+R=12+j 16=20 \angle-53^{\circ} \Omega$
$\mathrm{I}_{\mathrm{A}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{Z}_{\mathrm{A}}}=\frac{10 \angle-120^{\circ}}{20 \angle-53^{\circ}}=0.5 \angle-173^{\circ}=\mathrm{I}_{\mathrm{P}} \angle \theta_{\mathrm{I}}$
$\underline{\mathrm{i}_{\mathrm{a}}(\mathrm{t})=0.5 \cos \left(16 \mathrm{t}-173^{\circ}\right) \mathrm{A}}$
$\mathrm{rms}=\frac{\left|\mathrm{i}_{\mathrm{a}}(\mathrm{t})\right|}{\sqrt{2}}=0.353$
b) average power $\mathrm{P}=3 \mathrm{~V}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}} \cos \theta$

$$
\begin{aligned}
& \theta=\theta_{\mathrm{V}}-\theta_{\mathrm{I}}=-120-(-173)=53^{\circ} \quad\left(\text { also } \theta=\theta_{\mathrm{Z}}\right) \\
& \mathrm{P}=3(10)(0.5) \cos \left(53^{\circ}\right)=\underline{9.0 \mathrm{~W}}
\end{aligned}
$$

P12.4-4

Mathcad analysis

Describe the three-phase source: $\quad \mathrm{Vp}:=100 \quad \omega:=377$
$\mathrm{Va}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 0}$
$\mathrm{Vb}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}$
$\mathrm{Vc}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}$

Describe the three-phase load: ZA $:=20+\mathrm{j} \cdot \omega \cdot 0.06$
$Z B:=40+\mathrm{j} \cdot \omega \cdot 0.04$
$Z C:=60+j \cdot \omega \cdot 0.02$
Describe the three-phase line: $\mathrm{ZaA}:=10+\mathrm{j} \cdot \omega \cdot 0.005$
$\mathrm{ZbB}:=10+\mathrm{j} \cdot \omega \cdot 0.005$
$\mathrm{ZcC}:=10+\mathrm{j} \cdot \omega \cdot 0.005$
Calculate the voltage at the neutral of the load with respect to the neutral of the source:

$$
\begin{aligned}
& \mathrm{VnN}:=\frac{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{4}{3} \cdot \pi}+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{2}{3} \cdot \pi}+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})}{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC})+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB})+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})} \cdot \mathrm{Vp} \\
& \mathrm{VnN}=12.209-24.552 \mathrm{i} \quad|\mathrm{VnN}|=27.42 \quad \frac{180}{\pi} \cdot \arg (\mathrm{VnN})=-63.561 \\
& \text { Calculate the line currents: } \quad \mathrm{IaA}:=\frac{\mathrm{Va}-\mathrm{VnN}}{\mathrm{ZA}+\mathrm{ZaA}} \quad \mathrm{IbB}:=\frac{\mathrm{Vb}-\mathrm{VnN}}{\mathrm{ZB}+\mathrm{ZbB}} \quad \mathrm{IcC}:=\frac{\mathrm{Vc}-\mathrm{VnN}}{\mathrm{ZC}+\mathrm{ZcC}} \\
& \mathrm{IaA}=2.156-0.943 \mathrm{i} \quad \mathrm{IbB}=-0.439+2.372 \mathrm{i} \quad \mathrm{IcC}=-0.99-0.753 \mathrm{i} \\
& |\mathrm{IaA}|=2.353 \quad|\mathrm{IbB}|=2.412 \quad|\mathrm{ICC}|=1.244 \\
& \frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-23.619 \quad \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=100.492 \quad \frac{180}{\pi} \cdot \arg (\mathrm{IcC})=-142.741
\end{aligned}
$$

Calculate the power delivered to the load:
$\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{IaA} \cdot \mathrm{ZA}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{IbB} \cdot \mathrm{ZB}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{IcC} \cdot \mathrm{ZC}$
$\mathrm{SA}=110.765+125.275 \mathrm{i}$
$\mathrm{SB}=232.804+87.767 \mathrm{i}$
$\mathrm{SC}=92.85+11.668 \mathrm{i}$
$\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=436.418+224.71 \mathrm{i}$

P12.4-5

50Wrce
line
lond

Mathcad analysis

Describe the three-phase source: Vp:=100 $\omega:=377$
$\mathrm{Va}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot \mathrm{O}} \quad \mathrm{Vb}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120} \quad \mathrm{Vc}:=\mathrm{Va} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 120}$
Describe the three-phase load: ZA $:=20+\mathrm{j} \cdot \omega \cdot 0.06 \quad \mathrm{ZB}:=20+\mathrm{j} \cdot \omega \cdot 0.06 \quad \mathrm{ZC}:=20+\mathrm{j} \cdot \omega \cdot 0.06$
Describe the three-phase line: $\mathrm{ZaA}:=10+\mathrm{j} \cdot \omega \cdot 0.005 \quad \mathrm{ZbB}:=10+\mathrm{j} \cdot \omega \cdot 0.005 \quad \mathrm{ZcC}:=10+\mathrm{j} \cdot \omega \cdot 0.005$
Calculate the voltage at the neutral of the load with respect to the neutral of the source:

$$
\begin{aligned}
\mathrm{VnN}:=\frac{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{4}{3} \pi}+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB}) \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{2}{3} \pi}+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})}{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC})+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB})+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})} \cdot \mathrm{Vp} \\
\mathrm{VnN}=-6.966 \cdot 10^{-15}+8.891 \cdot 10^{-15} \mathrm{i}|\mathrm{VnN}|=1.129 \cdot 10^{-14} \quad \frac{180}{\pi} \cdot \arg (\mathrm{VnN})=-128.079
\end{aligned}
$$

Calculate the line currents: $\quad \mathrm{IaA}:=\frac{\mathrm{Va}-\mathrm{VnN}}{\mathrm{ZA}+\mathrm{ZaA}} \quad \mathrm{IbB}:=\frac{\mathrm{Vb}-\mathrm{VnN}}{\mathrm{ZB}+\mathrm{ZbB}} \quad \mathrm{IcC}:=\frac{\mathrm{Vc}-\mathrm{VnN}}{\mathrm{ZC}+\mathrm{ZcC}}$

$$
\begin{array}{lll}
\mathrm{IaA}=1.999-1.633 \mathrm{i} & \mathrm{IbB}=0.415+2.548 \mathrm{i} & \mathrm{IcC}=-2.414-0.915 \mathrm{i} \\
|\mathrm{IaA}|=2.582 & |\mathrm{IbB}|=2.582 & |\mathrm{IcC}|=2.582 \\
\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-39.243 & \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=80.757 & \frac{180}{\pi} \cdot \arg (\mathrm{IcC})=-159.243
\end{array}
$$

Calculate the power delivered to the load:
$\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{IaA} \cdot \mathrm{ZA}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{IbB} \cdot \mathrm{ZB}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{IcC} \cdot \mathrm{ZC}$
$\mathrm{SA}=133.289+150.75 \mathrm{i}$
$\mathrm{SB}=133.289+150.75 \mathrm{i}$
$\mathrm{SC}=133.289+150.75 \mathrm{i}$
$\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=399.868+452.251 \mathrm{i}$

P12.4-6

source line load

Mathcad analysis

Describe the three-phase source: Vp:=10 $\omega:=4$

$$
\mathrm{Va}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 90} \quad \mathrm{Vb}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 150} \quad \mathrm{Vc}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 30}
$$

Describe the three-phase load: ZA $:=4+\mathrm{j} \cdot \omega \cdot 1$

$$
\begin{array}{ll}
\mathrm{ZB}:=2+\mathrm{j} \cdot \omega \cdot 2 & \mathrm{ZC}:=4+\mathrm{j} \cdot \omega \cdot 2 \\
\mathrm{ZbB}:=0 & \mathrm{ZcC}:=0
\end{array}
$$

Describe the three-phase line: $\mathrm{ZaA}:=0$
Calculate the voltage at the neutral of the load with respect to the neutral of the source:

$$
\begin{aligned}
& \mathrm{VnN}:= \frac{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{Vb}+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB}) \cdot \mathrm{Vc}+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{Va}}{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC})+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB})+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})} \\
& \mathrm{VnN}=1.528-0.863 \mathrm{i} \quad|\mathrm{VnN}|=1.755 \quad \frac{180}{\pi} \cdot \arg (\mathrm{VnN})=-29.466
\end{aligned}
$$

Calculate the line currents: $\quad \mathrm{IaA}:=\frac{\mathrm{Va}-\mathrm{VnN}}{\mathrm{ZA}+\mathrm{ZaA}} \quad \mathrm{IbB}:=\frac{\mathrm{Vb}-\mathrm{VnN}}{\mathrm{ZB}+\mathrm{ZbB}} \quad \mathrm{IcC}:=\frac{\mathrm{Vc}-\mathrm{VnN}}{\mathrm{ZC}+\mathrm{ZcC}}$

$$
\begin{array}{lll}
\mathrm{IaA}=-1.333-0.951 \mathrm{i} & \mathrm{IbB}=0.39+1.371 \mathrm{i} & \mathrm{IcC}=0.943-0.42 \mathrm{i} \\
|\mathrm{IaA}|=1.638 & |\mathrm{IbB}|=1.426 & |\mathrm{IcC}|=1.032 \\
\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-144.495 & \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=74.116 & \frac{180}{\pi} \cdot \arg (\mathrm{IcC})=-24.011
\end{array}
$$

Calculate the power delivered to the load:
$\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{IaA} \cdot \mathrm{ZA}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{IbB} \cdot \mathrm{ZB}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{IcC} \cdot \mathrm{ZC}$
$S A=10.727+10.727 \mathrm{i}$
$\mathrm{SB}=4.064+16.257 \mathrm{i}$
$\mathrm{SC}=4.262+8.525 \mathrm{i}$

$$
\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=19.053+35.508 \mathrm{i}
$$

P12.4-7

Mathcad analysis

Describe the three-phase source: Vp $:=10 \quad \omega:=4$
$\mathrm{Va}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot-90} \quad \mathrm{Vb}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 150} \quad \mathrm{Vc}:=\mathrm{Vp} \cdot \mathrm{e}^{\mathrm{j} \cdot \frac{\pi}{180} \cdot 30}$
Describe the three-phase load: ZA $:=4+\mathrm{j} \cdot \omega \cdot 2 \quad \mathrm{ZB}:=4+\mathrm{j} \cdot \omega \cdot 2 \quad \mathrm{ZC}:=4+\mathrm{j} \cdot \omega \cdot 2$
Describe the three-phase line: $\mathrm{ZaA}:=0$

$$
\mathrm{ZbB}:=0 \quad \mathrm{ZcC}:=0
$$

Calculate the voltage at the neutral of the load with respect to the neutral of the source:
$\mathrm{VnN}:=\frac{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{Vb}+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB}) \cdot \mathrm{Vc}+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC}) \cdot \mathrm{Va}}{(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZcC}+\mathrm{ZC})+(\mathrm{ZaA}+\mathrm{ZA}) \cdot(\mathrm{ZbB}+\mathrm{ZB})+(\mathrm{ZbB}+\mathrm{ZB}) \cdot(\mathrm{ZcC}+\mathrm{ZC})}$

$$
\mathrm{VnN}=0
$$

$|\mathrm{VnN}|=0$
$\frac{180}{\pi} \cdot \arg (\mathrm{VnN})=-36.87$
Calculate the line currents: $\quad \mathrm{IaA}:=\frac{\mathrm{Va}-\mathrm{VnN}}{\mathrm{ZA}+\mathrm{ZaA}} \quad \mathrm{IbB}:=\frac{\mathrm{Vb}-\mathrm{VnN}}{\mathrm{ZB}+\mathrm{ZbB}} \quad \mathrm{IcC}:=\frac{\mathrm{Vc}-\mathrm{VnN}}{\mathrm{ZC}+\mathrm{ZcC}}$

$$
\begin{array}{lll}
\mathrm{IaA}=-1-0.5 \mathrm{i} & \mathrm{IbB}=0.067+1.116 \mathrm{i} & \mathrm{IcC}=0.933-0.616 \mathrm{i} \\
|\mathrm{IaA}|=1.118 & |\mathrm{IbB}|=1.118 & |\mathrm{IcC}|=1.118 \\
\frac{180}{\pi} \cdot \arg (\mathrm{IaA})=-153.435 & \frac{180}{\pi} \cdot \arg (\mathrm{IbB})=86.565 & \frac{180}{\pi} \cdot \arg (\mathrm{IcC})=-33.435
\end{array}
$$

Calculate the power delivered to the load:
$\mathrm{SA}:=\overline{\mathrm{IaA}} \cdot \mathrm{IaA} \cdot \mathrm{ZA}$
$\mathrm{SB}:=\overline{\mathrm{IbB}} \cdot \mathrm{IbB} \cdot \mathrm{ZB}$
$\mathrm{SC}:=\overline{\mathrm{IcC}} \cdot \mathrm{IcC} \cdot \mathrm{ZC}$
$S A=5+10 \mathrm{i}$
$\mathrm{SB}=5+10 \mathrm{i}$
$S C=5+10 i$

$$
\mathrm{SA}+\mathrm{SB}+\mathrm{SC}=15+30 \mathrm{i}
$$

Section 12-6: The Δ - Connected Source and Load
P12.5-1

$$
\begin{aligned}
& \text { Given } \mathrm{I}_{\mathrm{B}}=50 \angle-40^{\circ} \mathrm{A}=\mathrm{I}_{\mathrm{L}} \angle \phi \\
& \mathrm{I}_{\mathrm{B}}=\sqrt{3} \mathrm{I} \angle\left(\phi-30^{\circ}\right) \text { eqn. } 19-15 \\
& \therefore \mathrm{I}_{\mathrm{P}}=\frac{\mathrm{I}_{\mathrm{L}}}{\sqrt{3}} \angle\left(\phi+30^{\circ}\right) \\
& \mathrm{I}_{\mathrm{BC}}=\frac{50}{\sqrt{3}} \angle\left(-40^{\circ}+30^{\circ}\right)=28.9 \angle-10^{\circ} \mathrm{A} \\
& \mathrm{I}_{\mathrm{AB}}=28.9 \angle\left(-10^{\circ}+120^{\circ}\right)=28.9 \angle 110^{\circ} \mathrm{A} \\
& \mathrm{I}_{\mathrm{CA}}=28.9 \angle\left(-10^{\circ}-120^{\circ}\right)=28.9 \angle-130^{\circ} \mathrm{A}
\end{aligned}
$$

P12.5-2
2 delta loads in parallel so $5 \| 20=4 \Omega$

$$
\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{p}}=480 \mathrm{~V}
$$

phase current $I_{p}=\frac{480}{4}=120 \mathrm{~A}$
line current $\quad I_{L}=\sqrt{3} I_{p}=208 \mathrm{~A}$

Section 12-6: The Y- to Δ - Circuit
P12.6-1

$$
\begin{aligned}
& \text { delta } \operatorname{load} \mathrm{Z}=12 \angle 30^{\circ}=12 \angle \theta \\
& \mathrm{~V}_{\mathrm{L}}=208 \\
& \mathrm{I}_{\mathrm{P}}=\frac{208}{|\mathrm{Z}|}=\frac{208}{12}=17.32 \\
& \text { Let } \mathrm{V}_{\mathrm{ab}}=208 \angle 0^{\circ} \quad \rightarrow \mathrm{I}_{\mathrm{ab}}=17.32 \angle-30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& I_{A}=\sqrt{3} I_{P} \angle\left(\theta-30^{\circ}\right)=\sqrt{3}(17.32) \angle\left(-30^{\circ}-30^{\circ}\right)=30 \angle-60^{\circ} \\
& \text { then } I_{B}=30 \angle\left(-60^{\circ}-120^{\circ}\right)=30 \angle-180^{\circ} \\
& I_{C}=30 \angle\left(-60^{\circ}+120^{\circ}\right)=30 \angle 60^{\circ} \\
& P=\sqrt{3} V_{L} I_{L} \cos \theta=\sqrt{3}(208)(30) \cos 30^{\circ}=9360 \mathrm{~W}
\end{aligned}
$$

P12.6-2

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{Y}}+4=13.96-\mathrm{j} 8.36=16.3 \angle-30.9^{\circ} \\
& \text { then } \mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{Z}_{\mathrm{T}}} \text { where } \mathrm{V}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}} \\
& \mathrm{~V}_{\mathrm{a}}=\frac{480}{\sqrt{3}} \angle-30^{\circ} \mathrm{I}_{\mathrm{A}}=\frac{\frac{480}{\sqrt{3}} \angle-30^{\circ}}{16.3 \angle-30.9^{\circ}}=17 \angle 0.9^{\circ}
\end{aligned}
$$

P12.6-3

$$
\begin{array}{ll}
\mathrm{Z}_{\mathrm{Y}}=3+\mathrm{j} 4 \quad \mathrm{~V}_{\mathrm{L}}=380 & \Rightarrow \mathrm{~V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{L}} / \sqrt{3}=220 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{A}}=220 \angle 0^{\circ} & \mathrm{V}_{\mathrm{AB}}=380 \angle 30^{\circ} \\
\mathrm{V}_{\mathrm{B}}=220 \angle-120^{\circ} & \mathrm{V}_{\mathrm{BC}}=380 \angle-90^{\circ} \\
\mathrm{V}_{\mathrm{C}}=220 \angle 120^{\circ} & \mathrm{V}_{\mathrm{CA}}=380 \angle 150^{\circ} \\
\mathrm{I}_{\mathrm{A}}=\frac{220}{1+\mathrm{j} 4}=44 \angle-53.1^{\circ} & \mathrm{I}_{\mathrm{B}}=44 \angle-173.1^{\circ} \quad \mathrm{I}_{\mathrm{C}}=44 \angle 66.9^{\circ} \\
\text { and } \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{a}} &
\end{array}
$$

P12.6-4 Delta load $Z_{\Delta}=9+j 12 \quad V_{L}=380 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{AB}}=380 \angle 0^{\circ} \\
& \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{P}} \text { So } \mathrm{I}_{\mathrm{AB}}
\end{aligned}=\frac{380}{9+\mathrm{j} 12}=25.33 \angle-53.1^{\circ} 9 \text {. }
$$

Section 12-7: Balanced Three-Phase Circuits

P12.7-1

$$
\begin{aligned}
& \mathrm{V}_{\ell}=25 \mathrm{kV} \\
& \mathrm{~V}_{\mathrm{P}}=\frac{25}{\sqrt{3}} \times 10^{3} \mathrm{~V} \quad \text { phase } \mathrm{A}: \mathrm{I}_{\mathrm{A}}=\frac{25 / \sqrt{3} \times 10^{3}}{150 \angle 25^{\circ}} \angle 0^{\circ}=96 \angle-25^{\circ} \mathrm{A} \\
& \mathrm{P}=3 \mathrm{~V}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}} \cos \theta=3\left(\frac{25}{\sqrt{3}} \times 10^{3}\right) 96 \cos \left(25^{\circ}\right)=\underline{3.77 \mathrm{~mW}}
\end{aligned}
$$

P12.7-2

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{L}}=45 \mathrm{kV} & \mathrm{Z}_{\mathrm{y}}=10+\mathrm{j} 20 \\
\mathrm{Z}_{\mathrm{L}}=2 \Omega & \mathrm{Z}_{\Delta}=50 \Omega
\end{array}
$$

One per-phase circuit is:

$$
\begin{aligned}
& \text { One per-phase circuit is: } \\
& \mathrm{V}_{\mathrm{P}}=\frac{45}{\sqrt{3}} \mathrm{kV}=26 \mathrm{kV} \\
& \mathrm{Z}_{\mathrm{eq}}=\frac{(10+\mathrm{j} 20)(50 / 3)}{10+50 / 3+\mathrm{j} 20}=10+\mathrm{j} 5 \\
& \mathrm{Z}_{\mathrm{T}}=2+\mathrm{Z}_{\mathrm{eq}}=12+\mathrm{j} 5=13 \angle 22.6^{\circ} \\
& \mathrm{I}_{\mathrm{L}}=\frac{26 \mathrm{kV}}{13}=2 \mathrm{kA} \text { and } \mathrm{V}_{\mathrm{L}}=45 \mathrm{kV} \\
& \mathrm{P}_{\text {loss in }}^{\text {lines }}=\left|\mathrm{I}_{\mathrm{L}}\right|^{2}(2 \Omega)=8 \mathrm{~mW} \text { for each line } \\
& \mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=\sqrt{3}\left(45 \times 10^{3}\right)\left(2 \times 10^{3}\right) \cos 22.6^{\circ}=144 \mathrm{~mW}=3 \mathrm{P}_{\text {phase }} \\
& \therefore \% \operatorname{lost}=\frac{8 \times 3 \times 100 \%}{144}=\underline{16.6 \%}
\end{aligned}
$$

P12.7-3

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{V}_{\mathrm{a}}=5 \angle 30^{\circ} \mathrm{V} \\
\mathrm{I}_{\mathrm{a}}
\end{array}=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{Z}_{\mathrm{T}}}=\frac{5 \angle 30^{\circ}}{6+\mathrm{j} 8}=0.5 \angle-23^{\circ} \mathrm{A} \quad \therefore\left|\mathrm{I}_{\mathrm{a}}\right|=0.5 \mathrm{~A} \\
&=\sqrt{3}(5)(0.5) \cos \left(-30-23^{\circ}\right)=2.6 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta \\
& \\
& \mathrm{P}_{\text {line }}=\left|\mathrm{I}_{\mathrm{L}}\right|^{2}(2 \Omega)=(0.5)^{2}(2)=0.5 \mathrm{~W} \\
& \therefore \mathrm{P}_{\text {load }}=\mathrm{P}_{\text {total }}-\mathrm{P}_{\text {line }}=2.6-0.5=\underline{1.9 \mathrm{~W}}
\end{aligned}
$$

Section 12-8: Power in a Balanced Load
P12.8-1 $\quad \mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta \quad \mathrm{V}_{\mathrm{L}}=208, \quad \mathrm{I}_{\mathrm{L}}=3$
Need power factor \& need angle between I_{B} and V_{B}
Assuming a Y load (or transformed to a Y load)
V_{B} leads V_{CB} by $120^{\circ}+30^{\circ}=150^{\circ}$
So $\mathrm{V}_{\mathrm{B}}=\left|\mathrm{V}_{\mathrm{B}}\right| \angle \theta=\left|\mathrm{V}_{\mathrm{B}}\right| \angle 165^{\circ}$ and $\mathrm{I}_{\mathrm{B}}=3 \angle 110^{\circ}$

$$
\operatorname{So} \theta=165-110=55^{\circ}
$$

Then $\mathrm{P}=\sqrt{3}(208)(3) \cos 55^{\circ}=\underline{620 \mathrm{~W}}$
(OR)
$\mathrm{V}_{\mathrm{CB}}=208 \angle 15^{\circ}=\mathrm{V}_{\mathrm{L}}$
$\mathrm{I}_{\mathrm{B}}=3 \angle 110^{\circ}=\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{P}}$
$\mathrm{V}_{\mathrm{B}}=\frac{208}{\sqrt{3}} \angle 15-30^{\circ}=120 \angle-15^{\circ}=\mathrm{V}_{\mathrm{P}}$
$\mathrm{P}=3 \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \cos \theta=3(120)(3) \cos (125)=\underline{619 \mathrm{~W}}$

P12.8-2

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=480 \quad \eta=.85 \quad \mathrm{pf}=.8=\cos \theta \quad \text { so } \theta=36.9^{\circ} \\
& P_{\text {in }}=\frac{P_{\text {out }}}{\eta}=\frac{20(745.7)}{.85}=17.55 \mathrm{~kW} \text { where } 1 \mathrm{hp}=745.7 \mathrm{~kW}=\sqrt{3} V_{L} I_{L} \cos \theta \\
& \text { Thus } \mathrm{I}_{\mathrm{L}}=\frac{17.55 \times 10^{3}}{\sqrt{3}(480)(.8)}=26.4 \mathrm{~A}
\end{aligned}
$$

Assume Y connected load $\mathrm{I}_{\mathrm{A}}=26.4 \angle-36.9^{\circ}$ if $\mathrm{V}_{\mathrm{A}}=480 \angle 0^{\circ}$

P12.8-3

$\mathrm{V}_{\mathrm{L}}=220 \mathrm{~V} \quad \mathrm{P}_{\mathrm{T}}=1500 \mathrm{~W} \quad \mathrm{pf}=.8$ lagging
a) . connected : $\mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \mathrm{pf} \quad \Rightarrow \mathrm{I}_{\mathrm{L}}=\frac{1500}{\sqrt{3}(220)(.8)}=4.92$

$$
\begin{aligned}
& \text { so }\left|\mathrm{Z}_{\mathrm{ph}}\right|=\frac{220}{2.84}=77.44 \quad \mathrm{I}_{\mathrm{P}}=\frac{\mathrm{I}_{\mathrm{L}}}{\sqrt{3}}=2.84 \\
& \mathrm{Z}_{\Delta}=77.44 \angle \cos ^{-1}(.8)=77.44 \angle 36.9^{\circ} \Omega
\end{aligned}
$$

b) Y connected : $I_{L}=4.92$ as above $I_{L}=I_{P}$

$$
\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{L}} / \sqrt{3}=127 \mathrm{~V}
$$

$\therefore\left|\mathrm{Z}_{\mathrm{ph}}\right|=\frac{127}{4.92}=25.8$
So $\mathrm{Z}_{\mathrm{y}}=25.8 \angle 36.9^{\circ} \Omega$

P12.8-4

Parallel Δ loads

$$
\begin{aligned}
& \mathrm{Z}_{\Delta}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{2}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}}=\frac{\left(40 \angle 30^{\circ}\right)\left(50 \angle-60^{\circ}\right)}{40 \angle 30^{\circ}+50 \angle-60^{\circ}}=31.2 \angle-8.7^{\circ} \Omega \\
& \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{P}}, \mathrm{I}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{P}}}{\left|\mathrm{Z}_{\Delta}\right|}=\frac{600}{31.2}=19.2 \mathrm{~A}, \quad \mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{P}}=33.3 \mathrm{~A} \\
& \text { So } \mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \mathrm{pf}=\sqrt{3}(600)(33.3) \cos \left(-8.7^{\circ}\right)=\underline{34.2 \mathrm{~kW}}
\end{aligned}
$$

P12.8-5

$$
\begin{aligned}
& \tilde{\mathrm{S}}_{1}=27.3+\mathrm{j} 27.85 \\
& \widetilde{\mathrm{~S}}_{2}=15.0-\mathrm{j} 70.57 \\
& \widetilde{\mathrm{~S}}_{3 \phi}=42.3-\mathrm{j} 42.72 \mathrm{kVA} \Rightarrow \widetilde{\mathrm{~S}}_{\phi}=14.1-\mathrm{j} 14.24 \mathrm{kVA}=\widetilde{\mathrm{S}}_{3 \phi} / 3 \\
& \left|\tilde{\mathrm{~V}}_{\mathrm{LP}}\right|=208 / \sqrt{3}=120 \mathrm{~V}=\left|\mathrm{V}_{\mathrm{P}}\right| \\
& \tilde{\mathrm{I}}_{\mathrm{L}}=\frac{(14100+\mathrm{j} 14240)}{120}=117.5+\mathrm{j} 118.7 \mathrm{~A}=167 \angle 45.3^{\circ} \mathrm{A}
\end{aligned}
$$

Thus $\tilde{\mathrm{V}}_{\mathrm{S} \mathrm{\phi}}=120 \angle 0^{\circ}+(0.038+\mathrm{j} 0.072)(117.5+118.7)=115.9+\mathrm{j} 12.9$

$$
=116.6 \angle 6.4^{\circ} \mathrm{V} \text { (phase-neutral) }
$$

$\therefore\left|\tilde{\mathrm{V}}_{\mathrm{SL}}\right|=\sqrt{3}(116.6)=\underline{202.0 \mathrm{~V}}$

P12.8-6

$$
\begin{aligned}
& \tilde{\mathrm{I}}_{1}=\frac{500 / 3 \angle-\cos ^{-1} .85}{2.402}=58.98-\mathrm{j} 36.56 \mathrm{~A}, \tilde{\mathrm{I}}_{2}=\frac{25 \angle 90^{\circ}}{2.402}=\mathrm{j} 10.4 \mathrm{~A} \\
& \tilde{\mathrm{I}}_{3}=\frac{2402}{150}+\frac{2402}{\mathrm{j} 225}=16-\mathrm{j} 10.7 \mathrm{~A} \\
& \tilde{\mathrm{I}}_{\mathrm{L}}=\tilde{\mathrm{I}}_{1}+\tilde{\mathrm{I}}_{2}+\tilde{\mathrm{I}}_{3}=75-\mathrm{j} 36.8 \mathrm{~A} \\
& \tilde{\mathrm{~V}}_{\mathrm{S} \phi}=2402 \angle 0^{\circ}+(8.45+\mathrm{j} 3.9)(75-\mathrm{j} 36.8)=3179 \angle-0.3^{\circ} \\
& \therefore\left|\mathrm{V}_{\mathrm{SL}}\right|=\sqrt{3}(3179)=5506 \mathrm{~V}
\end{aligned}
$$

P12.8-7

a) $\widetilde{\mathrm{S}}_{1}=1.125+\mathrm{j} 0.9922 \quad \mathrm{~V}_{\mathrm{L}}=\frac{4160}{\sqrt{3}} \quad \phi$ refers to per - phase

$$
\begin{aligned}
& \frac{\tilde{\mathrm{S}}_{2}=2.000+\mathrm{j} 1.500}{\widetilde{\mathrm{~S}}_{\mathrm{L}}=3.125+\mathrm{j} 2.4922 \Rightarrow \tilde{\mathrm{~S}}_{\mathrm{L} \phi}=1.042+\mathrm{j} 0.831 \mathrm{MVA} / \mathrm{phase}} \\
& \tilde{\mathrm{I}}_{\mathrm{L}}=\frac{(1.042-\mathrm{j} 0.831) \times 10^{6}}{2402}=4.337-\mathrm{j} 345.9 \mathrm{~A}=554.7 \angle-38.6^{\circ} \mathrm{A} \\
& \tilde{\mathrm{~V}}_{\mathrm{S} \phi}=2402 \angle 0^{\circ}+(0.4+\mathrm{j} 0.8)(433.7-\mathrm{j} 345.9)=2859.6 \angle 4.2^{\circ} \mathrm{V} \\
& \therefore\left|\mathrm{~V}_{\mathrm{SL}}\right|=\sqrt{3}(2859.6)=\underline{4953 \mathrm{~V}}
\end{aligned}
$$

b) $\quad \mathrm{P}_{\mathrm{S}}=\sqrt{3}(4953)(554.7) \cos \left(4.2^{\circ}+38.6^{\circ}\right)=\underline{3.49 \mathrm{MW}}$
c) efficiency $=\eta=\frac{3.125}{3.49} \times 100 \%=\underline{89.5 \%}$

P12.8-8

Section 12-9: Two-Wattmeter Power Measurement

P12.9-1 Assume motor is a balanced load $V_{L}=440, I_{L}=52.5$

$$
\begin{aligned}
& \mathrm{P}_{\text {in }}=\frac{\mathrm{P}_{\text {out }}}{\eta} \eta=.746 \\
& \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\text {in }}=\frac{(20 \mathrm{hp})(746 \mathrm{~W} / \mathrm{hp})}{.746}=20 \mathrm{~kW}
\end{aligned}
$$

$$
\text { also } \mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta \quad \text { then } \cos \theta=\frac{20 \times 10^{3}}{\sqrt{3}(440)(52.5)}=0.50
$$

$$
\text { so } \theta=+60^{\circ}
$$

Use eqn. 12.9-5

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}\left[\cos \left(\theta+30^{\circ}\right)+\cos \left(\theta-30^{\circ}\right)\right]
$$

Then $\mathrm{W}_{\mathrm{A}}=0$

$$
\mathrm{W}_{\mathrm{C}}=20 \mathrm{~kW}
$$

P12.9-2

$$
\begin{aligned}
& V_{\mathrm{L}}=4000 \quad \mathrm{Z}_{\Delta}=40+\mathrm{j} 30=50 \angle 36.9^{\circ} \\
& \mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{L}}=4000 \quad \\
& \mathrm{I}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{P}}}{50}=\frac{4000}{50}=80 \mathrm{~A} \quad \mathrm{I}_{\mathrm{L}}=\sqrt{3} \mathrm{I}_{\mathrm{P}}=138.6 \mathrm{~A} \\
& \quad \mathrm{pf}=\cos \theta=\cos \left(36.9^{\circ}\right)=.80 \\
& \begin{array}{r}
\mathrm{P}_{1}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \left(\theta+30^{\circ}\right)=4000(138.6) \cos 66.9^{\circ}=217.5 \mathrm{~kW} \\
\mathrm{P}_{2}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \left(\theta-30^{\circ}\right)=4000(138.6) \cos 6.9^{\circ}=550.4 \mathrm{~kW} \\
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{1}+\mathrm{P}_{2}=767.9 \mathrm{~kW} \\
\text { Check }: \mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{I}_{\mathrm{L}} \mathrm{~V}_{\mathrm{L}} \cos \theta=\sqrt{3}(4000)(138.6) \cos 36.9^{\circ} \\
\\
=768 \mathrm{~kW} \quad \text { which checks }
\end{array}
\end{aligned}
$$

P12.9-3

$\mathrm{V}_{\mathrm{L}}=200 \mathrm{~V}, \mathrm{Y}$ load $\Rightarrow \mathrm{z}=70.7 \angle 45^{\circ}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B}}=1.633 \angle-165^{\circ} \quad \mathrm{I}_{\mathrm{C}}=1.633 \angle 75^{\circ} \\
& \mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=\sqrt{3}(200)(1.633) \cos 45^{\circ}=400 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{B}}=\mathrm{V}_{\mathrm{AC}} \mathrm{I}_{\mathrm{A}} \cos \theta_{1}=200(1.633) \cos \left(45^{\circ}-30^{\circ}\right)=315.47 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{C}}=\mathrm{V}_{\mathrm{BC}} \mathrm{I}_{\mathrm{B}} \cos \theta_{2}=200(1.633) \cos \left(45^{\circ}+30^{\circ}\right)=84.53 \mathrm{~W}
\end{aligned}
$$

P12.9-4

$\mathrm{V}_{\mathrm{L}}=208 \mathrm{~V}$
$\mathrm{Z}_{\mathrm{Y}}=10 \angle-30^{\circ} \quad \mathrm{Z}_{\Delta}=15 \angle 30^{\circ}$
Convert Z_{Δ} to $\mathrm{Z}_{\hat{\mathrm{Y}}} \rightarrow \mathrm{Z}_{\hat{\mathrm{Y}}}=\frac{\mathrm{Z}_{\Delta}}{3}=5 \angle 30^{\circ}$
then $\mathrm{Z}_{\text {eq }}=\frac{\left(10 \angle-30^{\circ}\right)\left(5 \angle 30^{\circ}\right)}{10 \angle-30^{\circ}+5 \angle 30^{\circ}}=\frac{50 \angle 0^{\circ}}{13.228 \angle-10.9^{\circ}}=3.78 \angle 10.9^{\circ}$
$\mathrm{V}_{\mathrm{p}}=\frac{208}{\sqrt{3}}=120 \mathrm{~V}$
$\mathrm{V}_{\mathrm{A}}=120 \angle 0 \quad \Rightarrow \mathrm{I}_{\mathrm{A}}=\frac{120 \angle 0^{\circ}}{3.78 \angle 10.9^{\circ}}=31.75 \angle-10.9^{\circ}$

$$
\mathrm{I}_{\mathrm{B}}=31.75 \angle-130.9^{\circ}
$$

$$
\mathrm{I}_{\mathrm{C}}=31.75 \angle 109.1^{\circ}
$$

$\mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=\sqrt{3}(208)(31.75) \cos (10.9)=11.23 \mathrm{~kW}$
$\mathrm{W}_{1}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \left(\theta-30^{\circ}\right)=6.24 \mathrm{~kW}$
$\mathrm{W}_{2}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \left(\theta+30^{\circ}\right)=4.99 \mathrm{~kW}$

P12.9-5 $\quad W_{1}=W_{A} \quad$ Let $W_{1}=920 \quad W_{2}=460$

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{W}_{1}+\mathrm{W}_{2}=920+460=1380 \mathrm{~W}
$$

$$
\mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta \text { and } \mathrm{V}_{\mathrm{L}}=120 \mathrm{~V}
$$

$$
\tan \theta=\sqrt{3} \frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{\mathrm{P}_{2}+\mathrm{P}_{1}}=\sqrt{3} \frac{(-460)}{1380}=-0.577 \quad \Rightarrow \theta=-30^{\circ}
$$

$$
\mathrm{P}_{\mathrm{T}}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta \text { so } \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{P}_{\mathrm{T}}}{\sqrt{3} \mathrm{~V}_{\mathrm{L}} \cos \theta}=7.67 \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{P}}=\frac{\mathrm{I}_{\mathrm{L}}}{\sqrt{3}}=4.43 \therefore\left|\mathrm{Z}_{\Delta}\right|=\frac{120}{4.43}=27.1 \Omega \text { or } \mathrm{Z}_{\Delta}=27.1 \angle-30^{\circ}
$$

P12.9-6

$$
\begin{array}{ll}
\mathrm{Z}=0.868+\mathrm{j} 4.924=5 \angle 80^{\circ} \quad \theta=80^{\circ} & \mathrm{V}_{\mathrm{L}}=380 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=\frac{380}{\sqrt{3}}=219.4 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{P}} \text { and } \mathrm{I}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{Z}}=43.9 \mathrm{~A} \\
\mathrm{~W}_{1}=(380)(43.9) \cos \left(\theta-30^{\circ}\right)=10,723 & \\
\mathrm{~W}_{2}=(380)(43.9) \cos \left(\theta+30^{\circ}\right)=-5706 & \\
\therefore \mathrm{P}_{\mathrm{T}}=5017 \mathrm{~W} &
\end{array}
$$

Verification Problems

VP 12-1 Y-Y connection

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{P}}\right|=\frac{416}{\sqrt{3}}=240 \mathrm{~V}=\left|\mathrm{V}_{\mathrm{A}}\right| \\
& \mathrm{Z}=10+\mathrm{j} 4=10.77 \angle 21.8^{\circ} \Omega \\
& \left|\mathrm{I}_{\mathrm{A}}\right|=\frac{\left|\mathrm{V}_{\mathrm{A}}\right|}{\mathrm{Z}}=\frac{240}{10.77}=\underline{22.28 \mathrm{~A}} \\
& \mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta=\sqrt{3}(416)(22.28) \cos \left(-21.8^{\circ}\right)=\underline{14.9 \mathrm{~kW}}
\end{aligned}
$$

VP 12-2

$$
\Delta \text { connection } \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{P}}=240 \mathrm{~V}
$$

$$
\begin{aligned}
\mathrm{Z} & =40+\mathrm{j} 30=50 \angle 36.9^{\circ} \Omega \\
\mathrm{I}_{\mathrm{P}} & =\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{Z}_{\Delta}}=\frac{240}{50 \angle 36.9^{\circ}}=\underline{4.8 \angle-36.9^{\circ} \mathrm{A}}
\end{aligned}
$$

PSpice Problems

SP 12-1

Input:

Output:

FREQ	IM(Rline)	IP(Rline)
$6.000 \mathrm{E}+01$	$3.033 \mathrm{E}+00$	$-7.234 \mathrm{E}+01$

SP 12-2

$$
\begin{aligned}
& \mathrm{f}=60 \mathrm{~Hz} \\
& -\mathrm{j} 8.4=\frac{-\mathrm{j}}{\omega \mathrm{C}} \Rightarrow \mathrm{C}=316 \mu \mathrm{~F}
\end{aligned}
$$

INPUT:

Vs	1	0	ac	277
Rline	1	2	4	
Rload	2	3	10	
Cload	3	0	$316 u$	
. ac lin	1	60	60	
-print ac	Im(Rline)	Ip(Rline)		
- end				
OUTPUT:				
FREQ	IM(Rline)	IP(Rline)		
6.OOOE+01	$1.697 E+01$	$9.464 E-01$		

SP 12-3

Input:

Design Problems

DP 12-1

$$
\begin{aligned}
& \mathrm{P}_{\text {per phase }}=400, \mathrm{pf}=\cos \theta=\cos 20^{\circ} \theta=20^{\circ} \\
& 400=\frac{208}{\sqrt{3}} \mathrm{I}_{\mathrm{L}} \cos 20^{\circ} \Rightarrow \quad \mathrm{I}_{\mathrm{L}}=3.5 \mathrm{~A} \\
& \text { each } \Delta \text { phase }: \mathrm{I}_{\Delta}=\frac{\mathrm{I}_{\mathrm{L}}}{\sqrt{3}}=2.04 \mathrm{~A} \\
& |\mathrm{Z}|=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{I}_{\Delta}}=\frac{208}{2.04}=101.8 \Omega \\
& \text { so } \underline{\mathrm{Z}}=101.8 \angle 20^{\circ} \Omega
\end{aligned}
$$

DP 12-2

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=240 \mathrm{~V} \\
& \mathrm{P}_{\mathrm{A}}=\mathrm{V}_{\mathrm{L}} I_{L} \cos \left(30^{\circ}+\theta\right)=1440 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{C}}=\mathrm{V}_{\mathrm{L}} I_{L} \cos \left(30^{\circ}-\theta\right)=0 \mathrm{~W} \\
& \text { now } \cos \phi=0 \text {, when } \phi=30-\theta=90^{\circ} \text { or } \theta=-60^{\circ} \\
& \text { then } 1440=240\left(\mathrm{I}_{\mathrm{L}}\right) \cos \left(-30^{\circ}\right) \Rightarrow \mathrm{I}_{\mathrm{L}}=6.93 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{Z}} \\
& \text { So }|\mathrm{Z}|=\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{I}_{\mathrm{P}}}=\frac{240 / \sqrt{3}}{6.93}=20 \Omega
\end{aligned}
$$

Thus $\underline{Z}=20 \angle-60^{\circ} \Omega$

DP 12-3

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=480 \mathrm{~V} \\
& \mathrm{P}_{\text {in }}=\frac{\mathrm{P}_{0}}{\eta}=\frac{100(746)}{.8}=93.2 \mathrm{~kW} \\
& \text { correction } \mathrm{C}=\mathrm{P}_{\text {in }} \frac{\left[\tan \left(\cos ^{-1} .75\right)-\tan \left(\cos ^{-1} .9\right)\right]}{3(377)(480)^{2}}=\underline{160 \mu \mathrm{~F}} \\
& \text { where } \mathrm{pfc}=.9 \text { and } \mathrm{pf}=.75
\end{aligned}
$$

$\mathrm{V}_{\mathrm{L}}=4 \mathrm{kV} \quad \mathrm{Z}_{\mathrm{L}}=4 / 3 \Omega$
If $\mathrm{n}_{2}=25 \rightarrow 25: 1$ step down at load to 4 kV
then $\mathrm{V}_{2}=100 \mathrm{kV}$
$\Rightarrow \mathrm{I}_{\mathrm{L}}$ at load $=\frac{4 \times 10^{3}}{\mathrm{Z}_{\mathrm{L}}}=3 \mathrm{kA}$
The line current in 2.5Ω is $|\mathrm{I}|=\frac{3 \mathrm{kA}}{25}=120 \mathrm{~A}$
Thus $V_{1}=(R+j X) I+V_{2}$

$$
=(2.5+\mathrm{j} 40)(120)+100 \times 10^{3}=100.4 \angle 2.7^{\circ} \mathrm{kV}
$$

Step need : $\mathrm{n}_{1}=\frac{100.4 \mathrm{kV}}{20 \mathrm{kV}}=5.02 \cong 5$
$\mathrm{P}_{\text {loss }}=|\mathrm{I}|^{2} \mathrm{R}=|120|^{2}(2.5)=36 \mathrm{~kW}, \mathrm{P}=\left(4 \times 10^{3}\right)\left(3 \times 10^{3}\right)=12 \mathrm{MW}$
$\eta=\frac{12-.036}{12} \times 100 \%=99.7 \%$ to load

