Chapter 16: Filter Circuits

Exercises

Ex. 16.3-1

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}(\mathrm{~s})=\frac{1}{\mathrm{~s}+1} \\
& \mathrm{~T}(\mathrm{~s})=\mathrm{T}_{\mathrm{n}}\left(\frac{\mathrm{~s}}{1250}\right)=\frac{1}{\frac{\mathrm{~s}}{1250}+1}=\frac{1250}{\mathrm{~s}+1250}
\end{aligned}
$$

Problems

Section 16.3: Filters
P16.3-1 Equation 16-3.2 and Table 16-3.2 provide a third-order Butterworth low-pass filter having a cutoff frequency equal to $1 \mathrm{rad} / \mathrm{s}$.

$$
H_{n}(s)=\frac{1}{(s+1)\left(s^{2}+s+1\right)}
$$

Frequency scaling so that $\omega_{\mathrm{c}}=2 \pi 100=628 \mathrm{rad} / \mathrm{s}$:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{L}}(\mathrm{~s}) & =\frac{1}{\left(\frac{\mathrm{~s}}{628}+1\right)\left(\left(\frac{\mathrm{s}}{628}\right)^{2}+\frac{\mathrm{s}}{628}+1\right)} \\
& =\frac{628^{3}}{(\mathrm{~s}+628)\left(\mathrm{s}^{2}+628 \mathrm{~s}+628^{2}\right)} \\
& =\frac{247673152}{(\mathrm{~s}+628)\left(\mathrm{s}^{2}+628 \mathrm{~s}+394384\right)}
\end{aligned}
$$

P16.3-2 Equation 16-3.2 and Table 16-3.2 provide a third-order Butterworth low-pass filter having a cutoff frequency equal to $1 \mathrm{rad} / \mathrm{s}$ and a dc gain equal to 1 .

$$
\mathrm{H}_{\mathrm{n}}(\mathrm{~s})=\frac{1}{(\mathrm{~s}+1)\left(\mathrm{s}^{2}+\mathrm{s}+1\right)}
$$

Multiplying by 5 to change the dc gain to 5 and frequency scaling to change the cutoff frequency to $\omega_{\mathrm{c}}=100 \mathrm{rad} / \mathrm{s}$:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{L}}(\mathrm{~s})=\frac{5}{\left(\frac{\mathrm{~s}}{100}+1\right)\left(\left(\frac{\mathrm{s}}{100}\right)^{2}+\frac{\mathrm{s}}{100}+1\right)} & =\frac{5 \cdot 100^{3}}{(\mathrm{~s}+100)\left(\mathrm{s}^{2}+100 \mathrm{~s}+100^{2}\right)} \\
& =\frac{5000000}{(\mathrm{~s}+100)\left(\mathrm{s}^{2}+100 \mathrm{~s}+10000\right)}
\end{aligned}
$$

P16.3-3 Use Table 16-3.2 to obtain the transfer function of a third-order Butterworth high-pass filter having a cutoff frequency equal to $1 \mathrm{rad} / \mathrm{s}$ and a dc gain equal to 5 .

$$
\mathrm{H}_{\mathrm{n}}(\mathrm{~s})=\frac{5 \mathrm{~s}^{3}}{(\mathrm{~s}+1)\left(\mathrm{s}^{2}+\mathrm{s}+1\right)}
$$

Frequency scaling to change the cutoff frequency to $\omega_{c}=100 \mathrm{rad} / \mathrm{s}$:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{H}}(\mathrm{~s}) & =\frac{5\left(\frac{\mathrm{~s}}{100}\right)^{3}}{\left(\frac{\mathrm{~s}}{100}+1\right)\left(\left(\frac{\mathrm{s}}{100}\right)^{2}+\frac{\mathrm{s}}{100}+1\right)} \\
& =\frac{5 \cdot \mathrm{~s}^{3}}{(\mathrm{~s}+100)\left(\mathrm{s}^{2}+100 \mathrm{~s}+100^{2}\right)} \\
& =\frac{5 \cdot \mathrm{~s}^{3}}{(\mathrm{~s}+100)\left(\mathrm{s}^{2}+100 \mathrm{~s}+10000\right)}
\end{aligned}
$$

P16.3-4 Use Table 16-3.2 to obtain the transfer function of a fourth-order Butterworth high-pass filter having a cutoff frequency equal to $1 \mathrm{rad} / \mathrm{s}$ and a dc gain equal to 5 .

$$
\mathrm{H}_{\mathrm{n}}(\mathrm{~s})=\frac{5 \cdot \mathrm{~s}^{4}}{\left(\mathrm{~s}^{2}+0.765 \mathrm{~s}+1\right)\left(\mathrm{s}^{2}+1.848 \mathrm{~s}+1\right)}
$$

Frequency scaling can be used to adjust the cutoff frequency 500 hertz $=3142 \mathrm{rad} / \mathrm{s}$:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{H}}(\mathrm{~s}) & =\frac{5 \cdot\left(\frac{\mathrm{~s}}{3142}\right)^{4}}{\left(\left(\frac{\mathrm{~s}}{3142}\right)^{2}+0.765\left(\frac{\mathrm{~s}}{3142}\right)+1\right)\left(\left(\frac{\mathrm{s}}{3142}\right)^{2}+1.848\left(\frac{\mathrm{~s}}{3142}\right)+1\right)} \\
& =\frac{5 \cdot \mathrm{~s}^{4}}{\left(\mathrm{~s}^{2}+2403.6 \mathrm{~s}+3142^{2}\right)\left(\mathrm{s}^{2}+5806.4 \mathrm{~s}+3142^{2}\right)}
\end{aligned}
$$

P16.3-5 First, obtain the transfer function of a second-order Butterworth low-pass filter having a dc gain equal to 2 and a cutoff frequency equal to $2000 \mathrm{rad} / \mathrm{s}$:

$$
\mathrm{H}_{\mathrm{L}}(\mathrm{~s})=\frac{2}{\left(\frac{\mathrm{~s}}{2000}\right)^{2}+1.414\left(\frac{\mathrm{~s}}{2000}\right)+1}=\frac{8000000}{\mathrm{~s}^{2}+2828 \mathrm{~s}+4000000}
$$

Next, obtain the transfer function of a second-order Butterworth high-pass filter having a passband gain equal to 2 and a cutoff frequency equal to $100 \mathrm{rad} / \mathrm{s}$:

$$
\mathrm{H}_{\mathrm{H}}(\mathrm{~s})=\frac{2 \cdot\left(\frac{\mathrm{~s}}{100}\right)^{2}}{\left(\frac{\mathrm{~s}}{100}\right)^{2}+1.414\left(\frac{\mathrm{~s}}{100}\right)+1}=\frac{2 \cdot \mathrm{~s}^{2}}{\mathrm{~s}^{2}+141.4 \mathrm{~s}+10000}
$$

Finally, the transfer function of the bandpass filter is

$$
H_{B}(s)=H_{L}(s) \cdot H_{H}(s)=\frac{16000000 \cdot s^{2}}{\left(s^{2}+141.4 s+10000\right)\left(s^{2}+2828 s+4000000\right)}
$$

P16.3-6

$$
\mathrm{H}_{\mathrm{B}}(\mathrm{~s})=4\left(\frac{\frac{250}{1} \mathrm{~s}}{\mathrm{~s}^{2}+\frac{250}{1} \mathrm{~s}+250^{2}}\right)^{2}=\frac{250000 \mathrm{~s}^{2}}{\left(\mathrm{~s}^{2}+250 \mathrm{~s}+62500\right)^{2}}
$$

P16.3-7 First, obtain the transfer function of a second-order Butterworth high-pass filter having a dc gain equal to 2 and a cutoff frequency equal to $2000 \mathrm{rad} / \mathrm{s}$:

$$
\mathrm{H}_{\mathrm{L}}(\mathrm{~s})=\frac{2\left(\frac{\mathrm{~s}}{2000}\right)^{2}}{\left(\frac{\mathrm{~s}}{2000}\right)^{2}+1.414\left(\frac{\mathrm{~s}}{2000}\right)+1}=\frac{2 \mathrm{~s}^{2}}{\mathrm{~s}^{2}+2828 \mathrm{~s}+4000000}
$$

Next, obtain the transfer function of a second-order Butterworth low-pass filter having a passband gain equal to 2 and a cutoff frequency equal to $100 \mathrm{rad} / \mathrm{s}$:

$$
\mathrm{H}_{\mathrm{H}}(\mathrm{~s})=\frac{2}{\left(\frac{\mathrm{~s}}{100}\right)^{2}+1.414\left(\frac{\mathrm{~s}}{100}\right)+1}=\frac{20000}{\mathrm{~s}^{2}+141.4 \mathrm{~s}+10000}
$$

Finally, the transfer function of the band-stop filter is

$$
\begin{aligned}
H_{N}(s)=H_{L}(s)+H_{H}(s) & =\frac{2 s^{2}\left(s^{2}+141.4 \mathrm{~s}+10000\right)+20000\left(\mathrm{~s}^{2}+2828 \mathrm{~s}+4000000\right)}{\left(\mathrm{s}^{2}+141.4 \mathrm{~s}+10000\right)\left(\mathrm{s}^{2}+2828 \mathrm{~s}+4000000\right)} \\
& =\frac{2 \mathrm{~s}^{4}+282.8 \mathrm{~s}^{3}+40000 \mathrm{~s}^{2}+56560000 \mathrm{~s}+8 \cdot 10^{10}}{\left(\mathrm{~s}^{2}+141.4 \mathrm{~s}+10000\right)\left(\mathrm{s}^{2}+2828 \mathrm{~s}+4000000\right)}
\end{aligned}
$$

P16.3-8

$$
\mathrm{H}_{\mathrm{N}}(\mathrm{~s})=4-4\left(\frac{\frac{250}{1} \mathrm{~s}}{\mathrm{~s}^{2}+\frac{250}{1} \mathrm{~s}+250^{2}}\right)^{2}=\frac{4\left(\mathrm{~s}^{2}+62500\right)^{2}}{\left(\mathrm{~s}^{2}+250 \mathrm{~s}+62500\right)^{2}}
$$

P16.3-9

$$
\mathrm{H}_{\mathrm{L}}(\mathrm{~s})=4\left(\frac{250^{2}}{\mathrm{~s}^{2}+\frac{250}{1} \mathrm{~s}+250^{2}}\right)^{2}=\frac{4 \cdot 250^{4}}{\left(\mathrm{~s}^{2}+250 \mathrm{~s}+62500\right)^{2}}
$$

P16.3-10

$$
\mathrm{H}_{\mathrm{H}}(\mathrm{~s})=4\left(\frac{\mathrm{~s}^{2}}{\mathrm{~s}^{2}+\frac{250}{1} \mathrm{~s}+250^{2}}\right)^{2}=\frac{4 \cdot \mathrm{~s}^{4}}{\left(\mathrm{~s}^{2}+250 \mathrm{~s}+62500\right)^{2}}
$$

Section 16.4: Second-Order Filters

P16.4-1

$$
T(s)=\frac{\mathrm{V}_{0}(\mathrm{~s})}{\mathrm{V}_{\mathrm{S}}(\mathrm{~s})}=\frac{\frac{\mathrm{s}}{\mathrm{RC}}}{\mathrm{~s}^{2}+\frac{\mathrm{s}}{\mathrm{RC}}+\frac{1}{\mathrm{LC}}}
$$

So $\quad \mathrm{K}=1, \omega_{0}^{2}=\frac{1}{\mathrm{LC}}$ and $\frac{1}{\mathrm{RC}}=\frac{\omega_{0}}{\mathrm{Q}} \Rightarrow \mathrm{Q}=\mathrm{RC} \omega_{0}=\mathrm{R} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}$
Pick $\underline{C=1 \mu \mathrm{~F}}$. Then $\underline{L}=\frac{1}{\mathrm{C} \omega_{0}^{2}}=\underline{1 \mathrm{H}}$ and
$\underline{R}=Q \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}}=\underline{1000 \Omega}$

P 16.4-2

$$
T(s)=\frac{I_{0}(s)}{I_{s}(s)}=\frac{\frac{1}{\mathrm{LC}}}{\mathrm{~s}^{2}+\frac{\mathrm{s}}{\mathrm{RC}}+\frac{1}{\mathrm{LC}}}
$$

So $K=1, \omega_{0}^{2}=\frac{1}{\mathrm{LC}}$ and $\frac{1}{\mathrm{RC}}=\frac{\omega_{0}}{\mathrm{Q}} \Rightarrow \mathrm{Q}=\mathrm{RC} \omega_{0}=\mathrm{R} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}$
Pick $\mathrm{C}=1 \mu \mathrm{~F}$ then $\mathrm{L}=\frac{1}{\mathrm{C} \omega_{0}^{2}}=25 \mathrm{H}$ and
$R=Q \sqrt{\frac{L}{C}}=3535 \Omega$

P16.4-3

$$
T(s)=\frac{-\frac{1}{R_{1} R C^{2}}}{s^{2}+\frac{1}{R C}\left(2+\frac{R}{R_{1}}\right) s+\frac{1}{R^{2} C^{2}}}
$$

Pick $C=0.01 \mu \mathrm{~F}$

$$
\begin{aligned}
& \frac{1}{\mathrm{RC}}=\omega_{0}=2000 \Rightarrow \mathrm{R}=50000=50 \mathrm{k} \Omega \\
& \frac{\omega_{0}}{\mathrm{Q}}=\frac{1}{\mathrm{RC}}\left(2+\frac{\mathrm{R}}{\mathrm{R}_{1}}\right) \Rightarrow \mathrm{R}_{1}=\frac{\mathrm{R}}{\mathrm{Q}-2}=8333=8.33 \mathrm{k} \Omega
\end{aligned}
$$

P16.4-4
Pick $\mathrm{C}=0.02 \mu \mathrm{~F}$. Then $\mathrm{R}_{1}=40 \mathrm{k} \Omega, \mathrm{R}_{2}=400 \mathrm{k} \Omega$ and $\mathrm{R}_{3}=3.252 \mathrm{k} \Omega$.

P16.4-5

$$
\begin{aligned}
& \text { Pick } \mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}=1 \mu \mathrm{~F} \\
& \frac{10^{6}}{\sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}}=\omega_{0} \\
& \frac{1}{\mathrm{R}_{1} \mathrm{C}}=\frac{\omega_{0}}{\mathrm{Q}} \Rightarrow \mathrm{Q}=\sqrt{\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}} \Rightarrow \mathrm{R}_{2}=\frac{\mathrm{R}_{1}}{\mathrm{Q}^{2}}
\end{aligned}
$$

In this case $R_{2}=R_{1}$ and $R_{1}=\frac{10^{6}}{1000}=1000=1 \mathrm{k} \Omega$

P 16.4-6

$$
\begin{aligned}
& V_{0}(s)=\frac{R_{2}}{R_{2}+\frac{1}{C_{2} s}} V_{a}(s) \\
& \frac{V_{0}(s)-V_{a}(s)}{R_{1}}-C_{1} s\left(V_{a}(s)-V_{i}(s)\right)=0 \\
& T(s)=\frac{V_{0}(s)}{V_{i}(s)}=\frac{s^{2}}{s^{2}+\frac{s}{R_{2} C_{2}}+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}
\end{aligned}
$$

Pick $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}=1 \mu \mathrm{~F}$. Then $\frac{1}{\mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}}=\omega_{0}$
Also $\frac{1}{\mathrm{R}_{2} \mathrm{C}}=\frac{\omega_{0}}{\mathrm{Q}} \Rightarrow \mathrm{Q}=\sqrt{\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}} \Rightarrow \mathrm{R}_{1} \mathrm{Q}^{2}=\mathrm{R}_{2}$
In this case $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$ and $\frac{1}{\mathrm{CR}}=\omega_{0} \Rightarrow \mathrm{R}=1000 \Omega$

P16.4-7

When $\mathrm{R}=25, \mathrm{~L}=10^{-2}$ and $\mathrm{C}=4 \times 10^{-6}$, then

$$
T(s)=\frac{25 \times 10^{6}}{s^{2}+2500 s+25 \times 10^{6}}
$$

So

$$
\begin{gathered}
\omega_{\text {old }}=\sqrt{25 \times 10^{6}}=5000 \\
\mathrm{~K}_{\mathrm{f}}=\frac{\omega_{\text {new }}}{\omega_{\text {old }}}=\frac{250}{5000}=0.05
\end{gathered}
$$

The scaled circuit is

P16.4-8

$T(s)=\frac{V_{0}(s)}{V_{i}(s)}=-\frac{\frac{R_{2}}{1+R_{2} \mathrm{C}_{2} \mathrm{~s}}}{\mathrm{R}_{1}+\frac{1}{\mathrm{C}_{1} \mathrm{~s}}}=-\frac{\frac{1}{\mathrm{R}_{1} \mathrm{C}_{2}} \mathrm{~s}}{\mathrm{~s}^{2}+\left(\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}\right) \mathrm{s}+\frac{1}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}$

Pick $\mathrm{K}_{\mathrm{m}}=1000$ so that the scaled capacitances will be $\frac{100 \mu \mathrm{~F}}{1000}=0.1 \mu \mathrm{~F}$ and $\frac{500 \mu \mathrm{~F}}{1000}=0.5 \mu \mathrm{~F}$ Before scaling $\left(\mathrm{R}_{1}=20, \mathrm{C}_{1}=100 \mu \mathrm{~F}, \mathrm{R}_{2}=10\right.$ and $\left.\mathrm{C}_{2}=500 \mu \mathrm{~F}\right)$

$$
\mathrm{T}(\mathrm{~s})=\frac{-100 \mathrm{~s}}{\mathrm{~s}^{2}+700 \mathrm{~s}+10^{5}}
$$

After scaling ($\left.\mathrm{R}_{1}=20000, \mathrm{C}_{1}=0.1 \mu \mathrm{~F}, \mathrm{R}_{2}=10000, \mathrm{C}_{2}=0.5 \mu \mathrm{~F}\right)$
$T(s)=\frac{-100 s}{s^{2}+700 s+10^{5}}$

P16.4-9 This is the frequency response of a bandpass filter, so $T(s)=\frac{K \frac{\omega_{0}}{Q} s}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}{ }^{2}}$
From peak of the frequency response
From peak of the frequency response
$\omega_{0}=2 \mathrm{p} \times 10 \times 10^{6}=62.8 \times 10^{6}$
$\mathrm{k}=10 \mathrm{~dB}=3.16$
next

$$
\frac{\omega_{0}}{\mathrm{Q}}=\mathrm{BW}=\left(10.1 \times 10^{6}-9.9 \times 10^{6}\right) 2 \pi=\left(0.2 \times 10^{6}\right) 2 \pi=1.26 \times 10^{6}
$$

so

$$
\mathrm{T}(\mathrm{~s})=\frac{3.16(1.26) 10^{6} \mathrm{~s}}{\mathrm{~s}^{2}+(1.26) 10^{6} \mathrm{~s}+62.8^{2} \cdot 10^{12}}=\frac{(3.98) 10^{6} \mathrm{~s}}{\mathrm{~s}^{2}+(1.26) 10^{6} \mathrm{~s}+3.944 .10^{15}}
$$

P16.4-10

(a)

Assume ideal op amp (inverting), then $\mathrm{H}=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{s}}}=-\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}$
where $Z_{1}=R_{1}-j / \omega C_{1}$ and $Z_{2}=\frac{R_{2} 1 / j \omega C_{2}}{R_{2}+1 / j \omega C_{2}}$
$\therefore H=-\frac{j \omega R_{2} C_{1}}{\left(1+j \omega / \omega_{2}\right)\left(1+j \omega / \omega_{1}\right)} \quad$ where $\omega_{1}=1 / R_{1} C_{1}, \omega_{2}=1 / R_{2} C_{2}$
(b) $\quad \omega_{1}=1 / \mathrm{R}_{1} \mathrm{C}_{1}$ and $\omega_{2}=1 / \mathrm{R}_{2} \mathrm{C}_{2}$
(c) at $\omega_{1} \ll \omega \ll \omega_{2}$

$$
|H| \approx \frac{\omega R_{2} C_{1}}{\omega / \omega}=\omega_{1} R_{2} C_{1}=R_{2} / R_{1} .
$$

\qquad

P16.4-11

Voltage divider yields: $\mathrm{V}_{0}=\mathrm{V}_{1} \frac{1 / \mathrm{sC}}{\mathrm{R}+1 / \mathrm{sC}}, \Rightarrow \mathrm{V}_{1}=(1+\mathrm{sRC}) \mathrm{V}_{0}$
KCL at $\mathrm{V}_{1}:\left(\mathrm{V}_{1}-\mathrm{V}_{\mathrm{s}}\right) / \mathrm{mR}+\left(\mathrm{V}_{1}-\mathrm{V}_{0}\right) / \mathrm{R}+\left(\mathrm{V}_{1}-\mathrm{V}_{0}\right) \mathrm{snC}=0$
Plugging V_{1} into above yields

$$
\begin{aligned}
& \mathrm{V}_{0}\left[\frac{1}{\mathrm{mR}}+\mathrm{sC}+\frac{\mathrm{sC}}{\mathrm{~m}}+\mathrm{s}^{2} \mathrm{nRC}^{2}\right]=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{mR}} \\
& \therefore \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{s}}}=\frac{1}{1+\mathrm{s}(\mathrm{~m}+1) \mathrm{RC}+\mathrm{nm} \mathrm{R}^{2} \mathrm{C}^{2} \mathrm{~s}^{2}}
\end{aligned}
$$

$$
\Rightarrow H(j \omega)=\frac{V_{0}}{V_{s}}=\frac{1}{1-\left(\omega / \omega_{0}\right)^{2}+j\left(\omega / Q \omega_{0}\right)} \quad \text { where } \omega_{0}=\frac{1}{\sqrt{\mathrm{mn} R C}} \text { and } Q=\frac{\sqrt{\mathrm{mn}}}{\mathrm{~m}+1}
$$

P16.4-12

$\omega_{0}=\frac{1}{\sqrt{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}=70.7 \mathrm{k} \mathrm{rad} / \mathrm{sec}=2 \pi(11.25 \mathrm{kHz})$
$\mathrm{BW}=\frac{\omega_{0}}{\mathrm{Q}}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}=150 \mathrm{k} \mathrm{rad} / \mathrm{s}=2 \pi(23.9 \mathrm{kHz})$

P16.4-13

$$
\left.\begin{array}{l}
\mathrm{C}_{1} \mathrm{~s}\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{s}}\right)+\frac{\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{0}}{\mathrm{R}_{1}}=0 \\
-\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{R}_{2}}-\mathrm{C}_{2} s \mathrm{~V}_{0}=0
\end{array}\right\} \Rightarrow \mathrm{H}(\mathrm{~s})=\frac{\mathrm{V}_{0}(\mathrm{~s})}{\mathrm{V}_{\mathrm{s}}(\mathrm{~s})}=\frac{-\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}} \mathrm{~s}}{\mathrm{~s}^{2}+\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}} \mathrm{~s}+\frac{1}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}
$$

$$
\omega_{0}=\frac{1}{\sqrt{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}=10^{4} \mathrm{rad} / \mathrm{sec}
$$

$$
\mathrm{BW}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}=10^{3} \mathrm{rad} / \mathrm{sec}
$$

$$
\mathrm{Q}=\frac{\omega_{0}}{\mathrm{BW}}=10
$$

P16.4-14

$\operatorname{aCs} \mathrm{V}_{\mathrm{c}}(\mathrm{s})+\frac{\mathrm{V}_{\mathrm{c}}(\mathrm{s})-\mathrm{V}_{\mathrm{s}}(\mathrm{s})}{\mathrm{R}}+\frac{\mathrm{V}_{\mathrm{c}}(\mathrm{s})-\mathrm{V}_{0}(\mathrm{~s})}{\mathrm{R}}=0$
$\frac{\mathrm{C}}{\mathrm{a}} \mathrm{s}\left(\mathrm{V}_{\mathrm{s}}(\mathrm{s})-\mathrm{V}_{0}(\mathrm{~s})\right)+\frac{\mathrm{V}_{\mathrm{s}}(\mathrm{s})-\mathrm{V}_{\mathrm{c}}(\mathrm{s})}{\mathrm{R}}=0$
$H(s)=\frac{V_{0}(s)}{V_{s}(s)}=\frac{s^{2}+\left(\frac{2}{a}+a\right) \frac{1}{R C} s+\frac{1}{(R C)^{2}}}{s^{2}+\left(\frac{2}{a}\right) \frac{1}{R C} s+\frac{1}{(R C)^{2}}}$
We require

$$
10^{5}=\frac{1}{\mathrm{RC}}
$$

Pick $\mathrm{C}=0.01 \mu \mathrm{~F}$ then $\mathrm{R}=1000 \Omega$
Next $\left|H\left(\omega_{0}\right)\right|=\frac{\frac{2}{a}+a}{\frac{2}{a}}=1+\frac{a^{2}}{2}$
We require

$$
201=1+\frac{\mathrm{a}^{2}}{2} \Rightarrow \mathrm{a}=20
$$

P16.4-15

$$
\begin{aligned}
& \frac{V_{a}}{R_{2}}+\frac{V_{a}-V_{0}}{R_{1}}=0 \\
& C s V_{a}+\frac{V_{a}-V_{b}}{R}=0 \\
& C_{s}\left(V_{b}-V_{0}\right)+\frac{V_{b}-V_{s}}{R}=0 \\
& \frac{V_{0}(s)}{V_{s}(s)}=\frac{\left(1+\frac{R_{1}}{R_{2}}\right) \frac{1}{R^{2} C^{2}}}{s^{2}+\left(2-\frac{R_{1}}{R_{2}}\right) \frac{1}{R C} \mathrm{~s}+\frac{1}{R^{2} C^{2}}} \\
& \omega_{0}=\frac{1}{R C}=\frac{1}{\left(1.2 \times 10^{3}\right)\left(20 \times 10^{-9}\right)}=41.67 \mathrm{k} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Section 16.5: High-Order Filters

P16.5-1 This filter is designed as a cascade connection of a Sallen-key low-pass filter designed as described in Table 16.4-2 and a first-order low-pass filter designed as described in Table 16.5-2.

Sallen-Key Low-Pass Filter

MathCad Speadsheet

The transfer function is of the form $T(s)=\frac{c}{s^{\wedge} 2+b s+a}$
Enter the transfer function coefficients: $\quad \mathrm{a}:=628^{2} \quad \mathrm{~b}:=628$
Determine the filter specifications: $\quad \omega_{0}:=\sqrt{\mathrm{a}} \quad \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \quad \omega_{0}=628 \quad \mathrm{Q}=1$
Pick a convenient value for the capacitance: $\quad \mathrm{C}:=0.1 \cdot 10^{-6}$
Calculate resistance values:

$$
\mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \quad \mathrm{~A}:=3-\frac{1}{\mathrm{Q}} \quad \mathrm{R}=1.592 \cdot 10^{4} \mathrm{R} \cdot(\mathrm{~A}-1)=1.592 \cdot 10^{4}
$$

Calculate the dc gain: $\mathrm{A}=2$.
The dc gain of the Sallen-key filter is 2 . Therefore, the dc gain of the first-order filter must be $1 / 2$ so that the dc gain of the whole filter is 1 .

MathCad Spreadsheet

The transfer function is of the form $T(s)=\frac{-k}{s+p}$
Enter the transfer function coefficients: $\quad \mathrm{p}:=628 \mathrm{k}:=0.5 \cdot \mathrm{p}$
Pick a convenient value for the capacitance: $\quad \mathrm{C}: 0.1 \cdot 10^{-6}$
Calculate resistance values: $\quad \mathrm{R} 2:=\frac{1}{\mathrm{C} \cdot \mathrm{p}} \mathrm{R} 1:=\frac{1}{\mathrm{C} \cdot \mathrm{k}} \quad \mathrm{R} 1=3.185 \cdot 10^{4} \quad \mathrm{R} 2=1.592 \cdot 10^{4}$

P16.5-2 This filter is designed as a cascade connection of a Sallen-key high-pass filter, designed as described in Table 16.4-2, and a first-order high-pass filter, designed as described in Table 16.5-2.

The passband gain of the Sallen key stage is 2 and the passband gain of the first-order stage is 2.5 So the overall passband gain is $2 \times 2.5=5$

Sallen-Key High-Pass Filter

First-Order High-Pass Filter

MathCad Spreadsheet:
The transfer function is of the form $T(s)=\frac{\mathrm{cs}^{\wedge} 2}{\mathrm{~s}^{\wedge} 2+\mathrm{bs}+\mathrm{a}}$
Enter the transfer function coefficients: $\quad \mathrm{a}:=10000 \mathrm{~b}: 100$
Determine the filter specifications: $\quad \omega_{0}:=\sqrt{\mathrm{a}} \quad \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \quad \omega_{0}=100 \quad \mathrm{Q}=1$
Pick a convenient value for the capacitance: $\quad \mathrm{C}:=0.1 \cdot 10^{-6}$
Calculate resistance values: $\quad \mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \quad \mathrm{~A}:=3-\frac{1}{\mathrm{Q}} \quad \mathrm{R}=1.10^{5} \quad \mathrm{R} \cdot(\mathrm{A}-1)=1 \cdot 10^{5}$
Calculate the passband gain: $\quad \mathrm{A}=2$

The transfer function is of the form $T(s)=\frac{-k s}{s+p}$
Enter the transfer function coefficients: $\mathrm{p}:=100 \quad \mathrm{k}:=2.5$
Pick a convenient value for the capactiance: $\mathrm{C}:=0.1 \cdot 10^{-6}$
Calculate resistance values: $\mathrm{R} 1:=\frac{1}{\mathrm{C} \cdot \mathrm{p}} \mathrm{R} 2:=\mathrm{k} \cdot \mathrm{R} 1 \mathrm{R} 1=1 \cdot 10^{5} \mathrm{R} 2=2.5 \cdot 10^{5}$

P16.5-3 This filter is designed as a cascade connection of a Sallen-key low-pass filter, a Sallen-key highpass filter and an inverting amplifier.

Sallen-key Low-Pass Filter

Sallen-Key High-Pass Filter

MathCad Spreadsheet:

The transfer function is of the form $T(s)=\frac{c}{s^{\wedge} 2+b s+a}$.
Enter the transfer function coefficients: a: $=4000000 \quad \mathrm{~b}:=2828$
Determine the filter specifications: $\omega_{0}:=\sqrt{\mathrm{a}} \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \omega_{0}=2 \cdot 10^{3} \mathrm{Q}=0.707$
Pick a convenient value for the capacitance: $\mathrm{C}:=0.1 \cdot 10^{-6}$
Calculate resistance values : $\mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \mathrm{~A}:=3-\frac{1}{\mathrm{Q}} \quad \mathrm{R}=5 \cdot 10^{3} \quad \mathrm{R} \cdot(\mathrm{A}-1)=2.93 \cdot 10^{3}$
Calculate the dc gain: $\mathrm{A}=1.586$

The transfer function is of the form $T(s)=\frac{\mathrm{cs}^{\wedge} 2}{\mathrm{~s}^{\wedge} 2+\mathrm{bs}+\mathrm{a}}$.
Enter the transfer function coefficients: a: $=10000 \mathrm{~b}:=141.4$
Determine the filter specifications: $\omega_{0}:=\sqrt{\mathrm{a}} \quad \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \quad \omega_{0}=100 \quad \mathrm{Q}=0.707$
Pick a convenient value for the capacitance: $\mathrm{C}=0.1 \cdot 10^{-6}$
Calculate resistance values: $\mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \quad \mathrm{~A}:=3-\frac{1}{\mathrm{Q}} \quad \mathrm{R}=1 \cdot 10^{5} \quad \mathrm{R} \cdot(\mathrm{A}-1)=5.86 \cdot 10^{4}$
Calculate the pass band gain: $\mathrm{A}=1.586$
The passband gain of these two stages is

$$
1.586 \times 1.586=2.515
$$

The required passband gain is
$\frac{1.6 \times 10^{6}}{141.4 \times 2828}=4.00$
An amplifier with a gain equal to $\frac{4.0}{2.515}=1.59$ is needed to achieve the specified gain.

P16.5-4
This filter is designed as the cascade connection of two identical Sallen-key bandpass filters

Sallen-Key BandPass Filter

Enter the transfer function coefficients: $\mathrm{a}:=62500 \quad \mathrm{~b}:=250$
Determine the filter specifications: $\omega_{0}:=\sqrt{\mathrm{a}} \quad \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \quad \omega_{0}=250 \quad \mathrm{Q}=1$
Pick a convenient value for the capacitance: $\mathrm{C}:=0.1 \cdot 10^{-6}$
Calculate resistance values: $\mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \mathrm{~A}:=3-\frac{1}{\mathrm{Q}}$
$R=4 \cdot 10^{4}$
$2 \cdot R=8 \cdot 10^{4}$
$R \cdot(A-1)=4 \cdot 10^{4}$

Calculate the passband gain: $\mathrm{A} \cdot \mathrm{Q}=2$

This filter is designed using this structure:

P16.5-5

Here's the low-pass filter design:

MathCad Spreadsheet
The transfer function is of the form $T(s)=\frac{c}{s^{2} 2+b s+a}$
Enter the transfer function coefficients: $\quad \mathrm{a}:=10000 \quad \mathrm{~b}:=141.4$
Determine the filter specifications: $\omega_{0}:=\sqrt{\mathrm{a}} \quad \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \quad \omega_{0}=100 \quad \mathrm{Q}=0.707$
Pick a convenient value for the capacitance: $\mathrm{C}:=0.1 \cdot 10^{-6}$

Calculate resistance values: $\mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \quad \mathrm{~A}:=3-\frac{1}{\mathrm{Q}} \quad \mathrm{R}=1 \cdot 10^{5} \quad \mathrm{R} \cdot(\mathrm{A}-1)=5.86 \cdot 10^{4}$
Calculate the dc gain: $\quad \mathrm{A}=1.586$

Here's the high-pass filter design:

MathCad Spreadsheet
The transfer function is of the form $T(s)=\frac{c^{\wedge} 2}{s^{\wedge} 2+b s+a}$
Enter the transfer function coefficients: $\mathrm{a}:=4000000 \quad \mathrm{~b}:=2828$
Determine the filter specifications: $\omega_{0}:=\sqrt{\mathrm{a}} \quad \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \quad \omega_{0}=2 \cdot 10^{3} \quad \mathrm{Q}=0.707$
Pick a convenient value for the capacitance: $\mathrm{C}:=0.1 \cdot 10^{-6}$
Calculate resistance values: $\mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \quad \mathrm{~A}:=3-\frac{1}{\mathrm{Q}} \quad \mathrm{R}=5 \cdot 10^{3} \quad \mathrm{R} \cdot(\mathrm{A}-1)=2.93 \cdot 10^{3}$
Calculate the dc gain: $\quad \mathrm{A}=1.586$
The required passband gain is 2, but both Sallen - key filters have pass band gains equal to 1.586 . The amplifier has a gain of $\frac{2}{1.586}=1.26$, to make the passband gain of the entire filter 2 .

P16.5-6

This filter is designed as the cascade connection of two identical Sallen-key notch filters.

The transfer function is of the form $T(s)=\frac{c\left(s^{\wedge} 2+a\right)}{s^{\wedge} 2+b s+a}$.
Enter the transfer function coefficients: $\mathrm{a}:=62500 \quad \mathrm{~b}:=250$
Determine the filter specifications : $\quad \omega_{0}:=\sqrt{\mathrm{a}} \quad \mathrm{Q}:=\frac{\omega_{0}}{\mathrm{~b}} \quad \omega_{0}=250 \quad \mathrm{Q}=1$
Pick a convenient value for the capacitance: $\mathrm{C}:=0.1 \cdot 10^{-6} \quad 2 \cdot \mathrm{C}=2 \cdot 10^{-7}$
Calculate resistance values: $\mathrm{R}:=\frac{1}{\mathrm{C} \cdot \omega_{0}} \quad \mathrm{~A}:=2-\frac{1}{2 \cdot \mathrm{Q}}$
$\mathrm{R}=4 \cdot 10^{4} \quad \frac{\mathrm{R}}{2}=2 \cdot 10^{4} \quad \mathrm{R} \cdot(\mathrm{A}-1)=2 \cdot 10^{4}$
Calculate the passband gain: $\quad \mathrm{A}=1.5$

The required passband gain is 4 . An amplifier having a gain equal to $\frac{4}{(1.5)(1.5)}=1.78$ is needed to achieve (1.5)(1.5) the required gain.

P16.5-7
(a) $\mathrm{H}_{1}=\mathrm{V}_{1} / \mathrm{V}_{\mathrm{s}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+1 / \mathrm{sC}}=\frac{\mathrm{R}_{1} \mathrm{sC}}{1+\mathrm{R}_{1} \mathrm{sC}}$

$$
\Rightarrow\left|\mathrm{H}_{1}(\mathrm{j} \omega)\right|=\frac{\omega \mathrm{R}_{1} \mathrm{C}}{\sqrt{1+\left(\omega \mathrm{R}_{1} \mathrm{C}\right)^{2}}}=\frac{\omega / \omega_{1}}{\sqrt{1+\left(\omega / \omega_{1}\right)^{2}}}, \omega=1_{1} / \mathrm{R}_{1} \mathrm{C}
$$

(b) $H_{2}=V_{2} / V_{1}=\frac{\mathrm{sL}}{\mathrm{R}_{2}+\mathrm{sL}} \Rightarrow\left|\mathrm{H}_{2}(\mathrm{j} \omega)\right|=\frac{\omega / \omega_{2}}{\sqrt{1+\left(\omega / \omega_{2}\right)^{2}}} \quad \omega_{2}=\mathrm{R}_{2} / \mathrm{L}$
(c) $\quad \mathrm{H}(\mathrm{j} \omega)=\mathrm{H}_{1}(\mathrm{j} \omega) \mathrm{H}_{2}(\mathrm{j} \omega)=\frac{\left(s \mathrm{R}_{1} \mathrm{C}\right)}{\left(1+\mathrm{sR} \mathrm{R}_{1} \mathrm{C}\right)} \frac{\left(\mathrm{s} / \mathrm{R}_{2}\right)}{\left(1+\mathrm{s} / / \mathrm{R}_{2}\right)}=\frac{\mathrm{s}^{2} \mathrm{R}_{1} \mathrm{LC} / \mathrm{R}_{2}}{1+\mathrm{s}\left(\mathrm{R}_{1} \mathrm{C}+\mathrm{L} / \mathrm{R}_{2}\right)+\mathrm{s}^{2}\left(\mathrm{R}_{1} \mathrm{LC} / \mathrm{R}_{2}\right)}$

$$
\frac{\mathrm{H}(\mathrm{j} \omega)=\frac{\left(\mathrm{s} / \omega_{0}\right)^{2}}{1+1 / \mathrm{Q}\left(\mathrm{~s} / \omega_{0}\right)^{2}+\left(\mathrm{s} / \omega_{0}\right)^{2}}}{\text { where } \omega_{0}^{2}=\mathrm{R}_{2} / R_{1} L C, \omega_{0} Q=\frac{1}{R_{1} C+L / R_{2}}}
$$

(d) The circuit of Figure P13-32d is not the same as $\mathrm{H}=\mathrm{H}_{1} \mathrm{H}_{2}$ since the first filter (looking from V_{s}) consists of C and $\mathrm{R}_{1} \|\left(\mathrm{R}_{2}+\mathrm{sL}\right)$. Thus effectively H_{1} is altered, and we won't get the response as sketched in part (c). So we need to place a buffer to the right of R_{1} to isolate each first-order filter, then $\mathrm{H}=\mathrm{H}_{1} \mathrm{H}_{2}$ will be obtained.

P16.5-8

total midband gain $=2000$

$\frac{\mathrm{F}\left(\mathrm{H}_{\mathrm{z}}\right)}{}$	$\frac{\left\|\mathrm{G}_{1}\right\|}{}$	$\frac{\left\|0_{2}\right\|}{}$	
1	2	1	$\frac{\left\|\mathrm{~V}_{0} / \mathrm{V}_{\mathrm{s}}\right\|}{2}$
10	20	10	200
100	20	100	2000
2000	20	100	2000
10,000	4	100	400
100,000	0.4	10	4

P16.5-9

$$
H_{1,2}=-\frac{R_{2} / R_{1}}{1+j \omega R_{2} C} \Rightarrow H_{\text {Total }}=H_{1,2}^{2}=\left(R_{2} / R_{1}\right)^{2}\left(\frac{1}{1+j \omega R_{2} C}\right)^{2}
$$

(a) At low frequency,

$$
\mathrm{H}_{\mathrm{T}}=\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)^{2} \quad \therefore \text { for } \mathrm{H}_{\mathrm{T}}=1 \text {, need } \mathrm{R}_{1}=\mathrm{R}_{2}
$$

Now also $\omega_{1}=1000=1 / R_{2} C$, so let $C=1 \mu \mathrm{~F}$

$$
\therefore \mathrm{R}_{1}=\mathrm{R}_{2}=1 /(1000)^{\left(10^{-6}\right)=1 \mathrm{k} \Omega}
$$

(b) At $\omega=10,000$

$$
\begin{aligned}
& |\mathrm{H}|=\frac{1}{1+\left(\omega \mathrm{R}_{2} \mathrm{C}\right)^{2}}=\frac{1}{1+\left[\left(10^{4}\right)\left(10^{3}\right)\left(10^{-6}\right)\right]^{2}}=10^{-2} \\
& \Rightarrow \quad 20 \log |\mathrm{H}|=20 \log 10^{-2}=-40 \mathrm{~dB}
\end{aligned}
$$

PSpice Problems

SP 16-7

Vs	7	0	ac	1
R1	7	6	200	
R2	7	1	100	
R3	7	2	50	
L1	6	5	10 m	
L2	1	3	10 m	
L3	2	4	10 m	
C1	5	0	$1 u$	
C2	3	0	$1 u$	
C3	4	0	$1 u$	
.ac dec	100	100	10 k	
.probe				
.end				

SP 16-8

Vs	1	0	ac	1
R1	1	2	100	
C1	2	3	0.2 u	
R2	3	4	200 k	
C2	3	4	50 p	

Xoa5 3004 FGOA
.subckt FGOA 124
*nodes listed in order - + o
Ri 14200 k

E	3	0	1	2	$100 k$

SP 16-9

Vs	1	0	ac	1
L1	1	2	2.5 m	
Rw	2	0	8	
C2	1	3	34.82 u	
L2	3	4	0.364 m	
Rmr	4	0	8	
C3	1	5	5 u	
Rt	5	0	8	
. ac dec	100	10	100 k	
. probe				
.end				

$\mathrm{Bw}=4.07 \mathrm{k}-493 \mathrm{H}_{\mathrm{Z}} \simeq 3600 \mathrm{H}_{\mathrm{Z}}$

Verification Problems

VP 16.1

$$
\begin{aligned}
& \omega_{0}=\sqrt{10000}=100 \mathrm{rad} / \mathrm{s} \\
& \frac{\omega_{0}}{\mathrm{Q}}=25 \Rightarrow \mathrm{Q}=\frac{100}{25}=4 \neq 5
\end{aligned}
$$

This filter does not satisfy the specifications.

VP 16.2

$$
\begin{aligned}
\omega_{0} & =\sqrt{10000}=100 \mathrm{rad} / \mathrm{s} \\
\frac{\omega_{0}}{\mathrm{Q}} & =25 \Rightarrow \mathrm{Q}=\frac{100}{25}=4 \\
\mathrm{~K} & =\frac{75}{25}=3
\end{aligned}
$$

This filter does satisfy the specifications.

VP16.3

$$
\begin{aligned}
\omega_{0} & =\sqrt{400}=20 \mathrm{rad} / \mathrm{s} \\
\frac{\omega_{0}}{\mathrm{Q}} & =25 \Rightarrow \mathrm{Q}=\frac{20}{25}=0.8 \\
\mathrm{~K} & =\frac{600}{400}=1.5
\end{aligned}
$$

This filter does satisfy the specifications.

VP16.4

$$
\begin{aligned}
\omega_{0} & =\sqrt{625}=25 \mathrm{rad} / \mathrm{s} \\
\frac{\omega_{0}}{\mathrm{Q}} & =62.5 \Rightarrow \mathrm{Q}=\frac{25}{62.5}=0.4 \\
\mathrm{~K} & =\frac{750}{625}=1.2
\end{aligned}
$$

This filter does satisfy the specifications.

VP 16.5

$$
\begin{aligned}
\omega_{0} & =\sqrt{144}=12 \mathrm{rad} / \mathrm{s} \\
\frac{\omega_{0}}{\mathrm{Q}} & =30 \Rightarrow \mathrm{Q}=\frac{12}{30}=0.4
\end{aligned}
$$

This filter does not satisfy the specifications.

Design Problems
DP 16.1

$$
\begin{aligned}
& \frac{\mathrm{V}_{0}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=\frac{-\frac{\mathrm{s}}{\mathrm{RC}}}{\mathrm{~s}+\frac{2}{\mathrm{R}_{3} \mathrm{C}} \mathrm{~s}+\frac{2}{\mathrm{RR}_{3} \mathrm{C}^{2}}} \\
& 2 \pi\left(100.10^{3}\right)=\omega_{0}=\sqrt{\frac{2}{\mathrm{RR}_{3} \mathrm{C}^{2}}} \\
& 2 \pi\left(10.10^{3}\right)=\mathrm{BW}=\frac{\omega_{0}}{\mathrm{Q}}=\frac{2}{\mathrm{R}_{3} \mathrm{C}} \\
& \mathrm{C}=100 \mathrm{pF} \text { is specified so } \\
& \mathrm{R}_{3}=\frac{2}{\left(100 \times 10^{-12}\right)\left(2 \pi \times 10 \times 10^{3}\right)}=318 \mathrm{k} \Omega \\
& \mathrm{R}=\frac{2}{\mathrm{R}_{3} \mathrm{C}^{2} \omega_{0}^{2}}=1.6 \mathrm{k} \Omega
\end{aligned}
$$

DP16.2

DP 16.3

Choose $\omega_{1}=0.1, \omega_{2}=2, \omega_{3}=5, \omega_{4}=100 \mathrm{rad} / \mathrm{s}$
The corresponding Bode magnitude plot is:

Minimum is -46.2 db at $\mathrm{f}_{\text {min }}=0.505 \mathrm{H}_{\mathrm{z}}$

