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Abstract— For decades, computer benchmarkers  have fought a War of Means. Although many have raised concerns with the geometric
mean (GM), it continues to be used by SPEC and others. This war is an unnecessary misunderstanding due to  inadequately articulated
implicit assumptions, plus confusion among populations, their parameters, sampling methods, and sample statistics.  In fact, all the Means
have their uses, sometimes in combination.  Metrics may be algebraically correct, but statistically irrelevant or misleading if applied to 
population distributions for which they are inappropriate. Normal (Gaussian) distributions are so useful that they are often assumed
without question, but many important distributions are not normal. They require different analyses, most commonly by finding a 
mathematical transformations that yields a normal distribution, computing the metrics, and then back-transforming to the original scale. 
Consider the distribution of relative performance ratios of programs on two computers. The normal distribution is a good fit only when 
variance and skew are small, but otherwise generates logical impossibilities and misleading statistical measures. A much better choice is the 
lognormal (or log-normal) distribution, not just on theoretical grounds, but through the (necessary) validation with real data. Normal and
lognormal distributions are similar for low variance and skew, but the lognormal handles skewed distributions reasonably, unlike the
normal.  Lognormal distributions occur frequently elsewhere are well-understood, and have standard methods of analysis.

Everyone agrees that “Performance is not a single number,” … and then argues about which number is better.  It is more important to 
understanding populations, appropriate methods, and proper ways to convey uncertainty. When population parameters are estimated via 
samples, statistically correct methods must be used to produce the appropriate means, measures of dispersion, Skew, confidence levels, and 
perhaps goodness-of-fit estimators. If the wrong Mean is chosen, it is difficult to achieve much. The GM predicts the mean relative
performance of programs, not of workloads. The usual GM formula is rather unintuitive, and is often claimed to have no physical 
meaning.  However, it is the back-transformed average of a lognormal distribution, as can be seen by the mathematical identity below. Its
use is not onlystatistically appropriate in some cases, but enables straightforward computation of other useful statistics.
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 “If a man will begin in certainties, he shall end in doubts, but if he will be content to begin with doubts, he shall end with certainties.”
– Francis Bacon, in Savage [1].

Index Terms—Benchmarking, Geometric Mean, Lognormal Distribution

1 GM considered harmful… 
People have long argued the merits of various means –
arithmetic (AM), harmonic (HM), geometric (GM).  In
1986, Fleming and Wallace [2] argued strongly for use of
the GM. In 1988, Smith [3] wrote the opposite, as has
John [4] just recently, going so far as to conclude:

“Geometric mean does not represent anything meaningful while 

aggregating performance metrics over a benchmark suite.”

Among the fine textbooks that discuss the issue are Jain’s
1991 book [5] and Lilja’s 2000 text [6]. Both discuss
sampling and populations, whose importance in bench-
marking is often forgotten.  Successive editions of
Hennessy and Patterson [7] have offered increasingly
nuanced analyses of performance issues. All these credi-
ble sources express concerns (or worse!) about the GM.

2 But people keep using it anyway

2.1 Livermore FORTRAN Kernels (LFK)
McMahon’s Livermore Fortran Kernels [8], successfully
used for 20+ years,  are well-constructed and carefully-
explained benchmarks that produce 72 data values plus
many summaries. McMahon [9] is still worth rereading
for good benchmarking practice.

“No single rate quotation is sufficient or honest. These meas-

ures show a realistic variation in Fortran cpu performance that 

has stood the test of time…

The performance of the standard “as is” LFK test (no modifica-

tion) correlates well with the performance of the majority of 

cpu-bound, Fortran applications, and hence, of diverse work-

loads…

ACM SIGARCH Computer Architecture News 1 Vol. 32, No. 4, September 2004



The best central measure is the Geometric Mean (GM) of 72 

rates because the GM is less biased by outliers than the Har-

monic (HM) or Arithemetic (AM) (sic)…

More accurate projection of cpu workload rate may be com-

puted by assigning appropriate weights for each kernel.”

The reason above is the one commonly quoted for the
use of the GM, and it is true, but has likely diverted un-
derstanding of the GM’s mathematical foundation.

2.2 Digital Review CPU 2 (DR CPU2) benchmarks
During the 1980s and early 1990s, Digital Review maga-
zine published “CPU 2 benchmark suite”  comparisons, a 
set of performance ratios for 34 Fortran benchmarks.
using the MicroVAX II as a base, and yielding
“MVUPS.” They computed the GM of the ratios as a 
central measure, but also gave standard deviations, con-
fidence intervals, and did jackknife statistical analyses.
The 34 programs were identified by name, and the full 
set of details published, plus comprehensible graphs [10].

2.3 Computer Vendors in 1980s
In the 1980s, computer and CPU vendors made wider use
of the GM in analyzing internal benchmark suits and
describing the performance of their computers in their
external performance documents.  Published results in-
cluded real application codes or publicly available vari-
ants thereof, such as the Berkeley SPICE circuit simula-
tor, useful well-known benchmarks (like Linpack or Liv-
ermore Fortran Kernels), Digital Review’s CPU 2. They
also included benchmarks that were often counterproduc-
tive, but demanded by customers anyway. Benchmark
results were often expressed in incommensurate metrics,
like Dhrystones, Whetstones, MFLOPS, run-times,
VUPS, or MVUPS...  Benchmark sets varied widely
among vendors.

Vendors often normalized results to one of their own 
products or to the VAX 11/780, and customers liked this
consistency as they could more easily do future perform-
ance estimation. These documents first tried to charac-
terize the performance of the company’s own products,
usually yielding a set of relative performance ratios, ex-
pressed in {MIPS, VAX-MIPS, IBM-mips, VUPS, or 
our-own-mips}, to set expectations for existing custom-
ers. Then vendors would do their best to compare with
other vendors’ products, which was expensive to do well.
Often vendors ran slightly different versions of code or
used different inputs, yielding inconsistent results diffi-
cult to compare by customers.

Most vendors used some internal suite of programs they
believed (rightly or wrongly) to be “typical” of their cus-
tomers’ programs, and which they used for architectural

and software tuning.  But these benchmarks were often
not distributable, or even recognizable by customers, so 
vendors needed to run many others as well.  Many
benchmark numbers were printed, with the hope that
each customer might find something they understood.
Customers liked seeing many real benchmarks, espe-
cially if they were recognizable and related to their own
work.  Engineers would carefully say “No one number
predicts performance, your mileage may vary”, and offer
various means, ranges, histograms.  Still, many custom-
ers demanded simple estimators for relative CPU speed,
either one number, or perhaps two (integer and float).

Following are just a few samples of the many perform-
ance reports written then. These were 20-50 pages long,
and they consumed much time and effort.

1985 Sun [11]
1987 HP [12], MIPS [13]
1988 AMD [14], Apollo [15]
1989 Digital Equipment [16], HP [17], SGI [18]

3 Kinds of benchmark analyses 
This section introduces terms for processes that people
have used for years, but for which the author knows no
short standard names.

3.1 WCA
A Workload Characterization Analysis (WCA) is the
process of gathering information, at various levels of
detail, about existing workloads. At the simplest level,
the result might be a list of programs known to be impor-
tant, and a sample run-time for each.1 A really thorough
study yields well-characterized distributions of program
run-times, frequencies of execution, fraction of total time
consumed in the environment studied, for each relevant
system, plus historical trends used to estimate likely
changes. These are expensive, long-term efforts as con-
tinual data collection is normally required. They are 
normally done by owners of expensive computers or
large numbers of them.

3.2 SERPOP
A somewhat orthogonal type of benchmark analysis
could be called a Sample Estimation of Relative Per-
formance Of Programs (SERPOP). A good SERPOP
analysis constructs a multi-element benchmark suite that
is a sample of some population of programs.  It requires
certain assumptions to be met regarding the sampling

1 Some computers spend most of their existence running one program re-
peatedly, and some people buy hundreds for this purpose at high energy
physics labs, at some bioinformatics sites, and for some graphics “render-
farms.”  WCA is relatively easy in this case.
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process, and it requires an appropriate model of the 
population’s distribution. Then it can produce a mean-
ingful and mean, indices of dispersion, confidence levels,
and goodness of fit measures. It is very desirable to 
identify the specific codes, describe their nature, to en-
able users to select only those relevant, and recomputed
metrics as needed. Anonymous benchmarks are not par-
ticularly convincing, no matter how good they are.

A few of the many SERPOP analyses include LFK, the
NAS kernels, DR CPU2, parts of many vendor perform-
ance documents, and SPEC CPU benchmarks.  Many
architectural studies have done SERPOP analyses as in-
put for new computer designs. A SERPOP analysis al-
ways admits to uncertainty, and preferably quantifies it. 

If an individual benchmark produces one metric, it is not
a SERPOP itself, but might be included as an element of 
a SERPOP. The 1980s performance documents tried to
do this by gathering numbers for Dhrystone, Whetstone,
Linpack, and others, normalizing them, and then display-
ing the distribution.

Conversely, a set of benchmarks used in a SERPOP
analysis can be treated as a single data point, discarding
all information except the total run-time.2

3.3 WAW
Workload Analysis with Weights (WAW) is done by peo-
ple who have done extensive WCA, who thus know the
parameters of the workload population.3  In purest form,
WAW predicts the performance of workloads under dif-
ferent assumptions. If the WCA is good enough, it can
give concrete results of the form “System A is 2.2X faster
than System B on our workload.”

In practice, people do as much WCA as they can afford,
and use WAW when they can. They employ SERPOP
information when they must, which is often, as WAW
copes poorly with missing data and cannot make some
kinds of predictions.  Many people use a combination, in
which they use WCA+WAW for data they can measure
cost-effectively, with SERPOP to provide relative per-
formance estimates as needed to estimate missing data.
Most WAW calculations are algebraic, with little or no
statistical inference.

2 SPEC89 did this with the NASA7 benchmark.  In effect, this converts a
set of programs into a workload with specific weightings, and then makes
that workload into a benchmark, so the relative weighted run-times really
matter, and the total run-time may be dominated by one element.

3 Note that a good SERPOP requires that the programs be representative,
while saying little about the frequency of usage.  A good WAW requires
serious workload characterization to be done, at least to the extent of identi-
fying the programs that consume large fractions of any resource.

4 Instructive 1987 Example – VAX 8700 
This example examines an instructive vendor CPU per-
formance characterization of the 1980s, as an example of 
a reasonable SERPOP.

4.1 VAX 8700/8800 Paper
McInnis, Kusik, and Bhandarkar [19] included an educa-
tional performance discussion, showing 99 benchmarks
comparing the new VAX 8700 to the VAX 11/780.

3.0-3.4  4.0% FFFD

3.4–3.8  6.1% FFFFFF

3.8-4.2  7.1% IFFFFDL

4.2-4.6 19.2% IIFFFFFFFFFDDDDDDLL

4.6-5.0 11.1% CIIIFFLLLLL

5.0-5.4 15.2% FFFFDDDDDDLLLLL

5.4-5.8 23.2% CIFFFDDDDDDDDDDDDLLLLLL

5.8-6.2 6.1% CCFDLL

6.2-6.6 3.0% DDL

6.6-7.0 2.0% DD

7.0-7.4 3.0% DLL

Table 1 - Example from Digital Equipment [19] 

The authors provided the overall statistics shown in Table
2, the subsample Medians, plus (not shown) Minimum,
Maximum, Standard Deviation, Coefficient of Variation,
Median, and Inter-quartile Range. The author derived
subsample GMs by assuming each point lies at the mid-
point of its range.

Description # Metric Value

Sample HM 99 HM 4.84

Sample GM 99 GM 4.92

Sample AM 99 AM 5.01

Sample Std Dev 99 STDV  .88

Sample Median 99 Mdian 5.0

Subsample Estimated

C: Cobol 4 GM 5.6

I: Fortran Integer 7 GM 4.3

F: Fortran Single 32 GM 4.7

D: Fortran Double 32 GM 5.3

L: LISP 24 GM 5.3

Table 2 – Statistics for Table 1 

4.2 What this data really is … and is not 
This is a tiny sample from a huge population of pro-
grams, chosen by Digital presumably to be somewhat
“representative." Programs are categorized into 5 major
types by language, but not specifically identified in the
paper. Presumably, each benchmark’s run-time is long 
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enough to avoid significant measurement error.
The paper presents no run-times, only run-time ratios of
VAX 11/780 time divided by VAX 8700 time.

Neither the actual run-time of any benchmark, nor the
ratio of run-times within a single system enter into these
calculations in any way, because this sample is not a
workload. It is unlikely that any computer in the world,
other than a few benchmarking systems at Digital, ever
ran this particular set of programs as a workload, and no
one but the benchmark administrator ever cared about the
total run-time.

This set of benchmarks is a sample used to estimate pa-
rameters of the population. Its subsamples might be used
to estimate performance of programs of the same type.4

Had benchmarks been explicitly identified, more precise
estimates might be made by specific customers who had
programs whose relative performance was known to be
well-correlated with some benchmark.

The paper assumes no run-times, frequencies, or weight-
ing factors, i.e., the usual output of WCA.   How could
there it? This is a characterization of a system and its
software, not of the myriads of differing customer work-
loads.  Even using the same ISA, operating system, and 
compilers, the relative performance of the VAX 8700 on
these programs varies from <3.4X to >7X.

Given those constraints, and the lack of any run-times
whatsoever, is there any use to such data? Actually, this
sort of treatment is quite useful to real customers, to 
computer architects and compiler writers.

4.3 What can be learned in VAX 8700 SERPOP?

The most important performance information above lies
in the distribution of the performance ratios and this sort 
of display makes that clear.5

The closeness of HM, GM, AM and Median indicates
low skew in the overall distribution. On the other hand,
the multi-modal nature of the distribution, with two
peaks nearly a Standard Deviation apart, is a strong hint
that there exist several distinct subpopulations, and that it 
would be wise to understand their nature.

Suppose a VAX 11/780 customer is considering purchase
of a VAX 8700, perhaps in comparison with one or more
inexpensive pre-owned VAX 11/780s.

4 This of course is analogous to Spec’s split into integer and floating point
groups immediately after SPEC89.

5 The VAX 8700 was typically described as 6 VUPS, which might have
been computed from a different set of measurements, or perhaps marketing.

The customer’s knowledge of the proposed workload
could range from near-zero to near-perfect.

4.3.1 Near-zero knowledge
Suppose the customer knows little or nothing about the
workload expected on the VAX 8700.6 The wide range of
ratios warns the customer that they must characterize 
their own workload well (WCA) if they want to make
good predictions about workloads. Although 68.7% of 
the data points fall in the range 4.2-5.8, that still leaves
31.3% elsewhere so the customer can expect substantial 
variation - VAX 8700 is not just a VAX 11/780 with a 
faster clock, but has substantial architectural differences.
Had the range been 4.5-5.5, with 70% of points in the
range 4.8-5.2, most people would likely assume the VAX
8700 was simply 5X faster on most user programs, mak-
ing both WCA and WAW easy.

4.3.2 Some knowledge of workload
Suppose the benchmark subsample categories given are 
meaningful to the customer. As shown in Table 2, the
subsample GMs differ somewhat. The data looks like
samples from two different populations: {F, I} and {C, 
D, L}, the first with means ~4.4, and the second with
means ~ 5.4. In this case, customers know there are 
relatively many samples for {F, D, L}, and not very
many for {I, C}, and their confidence in the statistics of 
latter groups would be lower.

A user might well use these numbers to do quick per-
formance estimation for workloads, using subsample
GMs.  Suppose the customer spends 8 hours per day run-
ning D-type jobs, 4 hours running I-type, and the other
12 running an unknown mix. A simple estimator for the
total run-time for the same 24-hour mix would be:
T(8700) = 8/5.3 + 4/4.3 + 12/4.92 = 4.9 hours. This
combines SERPOP (to estimate relative performance of 
programs) with WAW (to apply relevant weights).

4.4 Good knowledge of workload
Suppose the customer’s workload is dominated by a few
programs, and that the benchmarks had been identified
more specifically.  If the customer knows from past his-
tory that their codes correlate well with specific bench-
marks, they ignore the statistics, and just use the ratios of
the related benchmarks. They then use their knowledge
of their workload weightings to compute the relative per-
formance, i.e. a simple WAW that incorporates a few of
the SORPOP data points.

6 Suppose the machine will be used to run programs not yet written, as
certainly happens for a machine with a five-year life.  Suppose the buyer of 
the machine is a computer center, and provides service to others who gener-
ate changing workloads.
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4.5 Near-perfect knowledge of workload 
Suppose the customer’s workload is dominated by one 
known program..  Given the substantial dispersion, the
customer should ignore the data, insist on benchmarking
their code on the new system, and spend serious time
tuning and analyzing code, if they have such access.7

This sort of data is a sample, whose statistics help esti-
mate certain population parameters, and whose subsam-
ples and components improve estimates, if coupled with
appropriate workload knowledge, the more, the better.
This set of benchmarks is not anybody’s workload. It is
a sample of a program population, not a sample of work-
load populations.

This process and the resulting  advice are similar to those
of SPEC, and that is not accidental. In fact, many ven-
dors were following similar approaches, and the SPEC 
process was designed to build on them.

5 SPEC History – “Put Up or Shut Up” 
Although working for (sometimes bitter) competitors, the
1980s vendor performance documents’ authors usually
knew each other. They often referenced each others’
work, shared ideas, traded benchmark numbers, and
sometimes benchmark code. Competition was fierce, but
good ideas tended to propagate among the competitors.

SPEC (www.specbench.org) was founded in late 1988,
by Apollo, HP, MIPS8, Sun, and EE Times magazine,
which quoted benchmarks about which we vendors
sometimes complained.  EE Times editors challenged us
to stop whining and build some better benchmarks. We
(vendors) were frustrated by the scarcity of industry-wide
CPU benchmarks whose behaviors matched those of the
real programs that we used internally and programs seen 
in customer benchmarking. All were weary of wasting
time on Dhrystone,9 Whetstone, and others that induced 
bizarre compiler tunings, marketing demands for new
instructions, and sometimes outright cheating, but did
little to improve performance on real programs.   Good
performance documents were extremely expensive to 
produce, and yet, customers still complained that inter-
vendor comparisons were poor.

The first SPEC meeting10 rapidly developed a consensus

that we should cooperate to develop metrics over which
competition would be meaningful to our customers, and
that would actually help improve system performance.
We agreed on the basic approach, and several likely 
benchmarks, based on long internal experience. We re-
cruited other vendors to buy into this approach. A year
later we released the SPEC89 CPU benchmarks [20].
Results started to be widely reported in early 1990 [21].

7 They might not, the program might be third-party software not yet
ported to the machine for which purchase is considered.

8 The author was the MIPS founding representative, and was heavily in-
volved in the early work, through SPEC92.  He edited most of the MIPS
Performance Briefs [7], which used GMs, and whose presentation style had
some influence on SPEC89.  All comments in this  paper are his alone.

9 Including the original Dhystone author, Reinhold Weicker, who later
joined SPEC and contributed strongly over many years.

10 Held in the “neutral ground” of a bar owned by Stan Baker of EE

SPEC89 used 10 benchmarks with times normalized to a 
base system, the VAX 11/780.11  SPEC always empha-
sized that there was no single number, used a graphical 
presentation format that reinforced that idea, and strongly 
urged publications to print all 10 numbers, so that users 
could ignore inapplicable benchmarks. Although many
of us preferred separate integer and floating means, we
started with a single mean.  Many people told us that if
we wanted to eliminate the confusion of VAX-MIPS,
VUPS, Dhrystone-mips, etc, that we needed one number.
It was emphatically pointed out to us that if we didn’t
specify one number, that other people would do it for us,
differently.  However, people quickly started computing
the additional GMs for the integer and floating subsam-
ples and by SPEC92, they had been officially separated,
and the effort was extended with additional benchmark
sets, in line with trying to find programs to which cus-
tomers could relate directly.

From the beginning, SPEC always hoped that that the
creation of consistent results data would lead to interest-
ing analyses. The author [22] used the accumulated data 
to show the poor correlation between vendor MIPS-
ratings and SPEC results. As hoped, the benchmarks
were also heavily studied in universities.  For example, in
1995, Giladi and Ahituv [23] analyzed SPEC92 and
found benchmark redundancies and other interesting re-
sults.

SPEC has always been concerned about realistic “social
engineering” issues of benchmarking.  If SPEC were
successful, fierce pressure would develop around its met-
rics.  Mighafori, Jacoby, and Patterson [24] studied the
resulting issues in SPEC92, and offered suggestions in-
corporated in SPEC95. As will be seen later, not only
must programs be chosen to be “representative”, but
unlike normal samples, SPEC benchmarks could not be
truly random samples. Worse, the choice of a program
for SPEC induces intense study and tuning that changes

Times. The Transaction Processing Council, started about a month earlier,
yielding two major industry groups pursuing (differing) benchmark issues.

11 Technically, any system could have been chosen without changing the
relative performance ratios.  But, in practice, in the workstation and server
market of the late 1980s, it was politically impossible to choose anything but
the VAX 11/780.  Fortunately, DIGITAL still owned many 11/780s,  joined
SPEC early, and kindly ran many long benchmarks.
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the resulting numbers, and those effects must be man-
aged.  SPEC knew that benchmarks would age, and be-
come unrepresentative of user programs, so:
SPEC89 SPEC92 SPEC95 SPEC2000 SPEC200?

6 Benchmark statistics 

6.1 Statistics background

Most of  the statistical theory needed can be found in 
Lilja [6], Chapters 3 and 4, or especially Jain [5], Chap-
ters 12 and 13, plus section 29.10 (Lognormal distribu-
tion), 29.12 (Normal, or Gaussian Distribution.  De-
Coursey [25] is a good general text, including use of Ex-
cel.  Good and Hardin [26] offer useful cautions. If texts
are not handy, the terms are easily found on the Web.

6.2 Definitions
Many analyses start with n x m runtimes for n programs
on m systems:
Pi = 1, n Programs, sometimes with Weights Wi = 1,n

Sj = 1, m Systems
Tij Run-time of Pi on Sj

Performance ratios are given as the ratio of  Sj’s perform-
ance to that of Sk’s running program Pi with some spe-
cific input.   Mathematically, any system could be chosen
as the base, and k can be assumed to be 1 when omitted.
Larger ratios imply higher speed.

Rijk = Tik/Tij

Of course, some benchmarks report results in units other
than time, such as Dhrystones, Whetstones, i.e., Xik and 
Xij.  If these are inversely proportional to run-times for
identical achieved work, they can be normalized without
ever knowing the run-times.

Rijk = Xij/Xik

In general, once the  Rijk are computed, SERPOP analy-
ses ignore the Tij, just the opposite of WAW analyses.

6.3 Assumptions for SERPOP

The usefulness of a SERPOP analysis depends on the
goodness of several assumptions. A1 and A2 deal with 
initial selection of sample and its size. A3 and A4
needed to produce trustable base data. A5 is unnecessary
for correct statistics, but is helpful to the consumers of
the statistics, so should not be ignored.

A1: Programs and inputs should be “Representative”

This is necessarily vague.   Computer architects and sys-
tems software people often study detailed micro-
architectural statistics of internal codes and customer
codes that they see. Although such programs vary
greatly, synthetic benchmarks often show characteristics
unlike any real programs, and are usually avoided.12

Experienced people do accumulate knowledge of the
kinds of programs seen in real life in their domains.
This is a sample of programs, not of workloads contain-
ing the programs.  Hence, people normally use un-
weighted techniques, although if an important class of
programs is seriously underweighted in a sample, people
might use weightings.  On the other hand, if that class of
program actually behaves differently than the rest of the
sample, the sample might be split into separate subsam-
ples, and results computed for each.  For example, inte-
ger programs were likely under-represented in SPEC89,
and the right response was to split integer and floating
point programs, because they often behave differently.
Likewise, in the VAX 8700 example, the Integer {I} pro-
grams are under-represented.

Likewise, the chosen input should be “representative,”13

as the results reflect program and input. 

A2: Small sample sizes should be avoided

One can learn something from even a handful of pro-
grams, if they  are well-chosen. It is wonderful, but often
expensive, to obtain  a complete set of run-times for 30
different programs  on multiple systems.14 Some vendors
have collected hundreds of programs for their internal
workloads used for architectural and compiler tuning, but 
many of these programs are difficult to convert into dis-
tributable benchmarks.15

A3: Measurement Repeatability
Assume that multiple executions of the same program
with same input on same system yield a distribution of
run-times with Standard Deviation << Mean, so that a
Mean (or Median) is a good estimate of population mean.

12 For example, 1980s CPU and compiler designers disliked Dhrystone
because it just didn’t act like real programs.  Among other things, the num-
ber of instructions/function call was very low, and it dealt only with 30-
character strings.  Synthetic benchmarks can be useful, but great care is 
needed to avoid over-application of their results.

13 Berkeley Spice was quickly chosen at the first SPEC meeting, as we all
knew it for a  floating-point-intense code of which commercial versions
were widely used, and we all used it as a benchmark.  Input decks that ven-
dors were willing to share proved to run too quickly, and another was found
with adequate run-time. To our chagrin, it later was discovered that the
specific code mostly exercised memory allocation and did little floating
point computing!  We knew it was floating point, so we didn’t check.

14 For samples of 30 or more, the normal distribution is usually a reason-
able approximation to  the t-distribution, which simplifies analysis.

15 Some are proprietary.  Others are difficult to use as industry-standard
benchmarks for a plethora of causes that are often painful surprises.
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People normally do increase the run-time of short bench-
marks to avoid clock measurement problems on the fast-
est machine for which it is expected to be used.16 They
also tend to reduce the time of long-running codes for 
convenience. Such behavior implies that run-times are 
only considered relevant in producing ratios among sys-
tems. The relative sizes of the Tij within each Sj are con-
sidered irrelevant, exactly opposite to WCA and WAW,
which assume that sample run-times really matter, as 
they  do for those analyses.

A4: Performance ratios must vary little across inputs

Suppose Tij are recalculated across a wide variety of in-
puts.  For some programs, Tij is approximately constant
across all inputs, while for others, it varies wildly. Vari-
ability of Tij is perfectly acceptable, but the reported Rijk

should be near the mean of a distribution with small
standard deviation.

This is true for many kinds of programs, but not all.  For
example, programs that depend on convergence proper-
ties of floating point computations may behave wildly
different on different machines, although this less of an
issue in an era of IEEE Floating Point.  Jain[5], Chapter
11 discusses “Ratio Games,” and those warnings are 
well-taken here.  Finally, data-size-dependent codes
sometimes disobey this assumption in the presence of
different cache sizes and memory designs.17

A5: Programs should be “recognizable”

In practice, credibility is improved if  individual bench-
marks are identified and recognizable. Even better, it 
may help some users select specific benchmarks for their
own WAW analyses.

6.4 Population distributions and their metrics

Statistics can be computed from most distributions, but
they may not mean much if the methods mismatch the-
distribution and there are many ways to go wrong. Nor-
mal distributions are common, but cannot be assumed.
It useful to compute the first four moments Arithmetic
Mean, Standard Deviation, Skew (Skewness), and Kurto-
sis, plus Confidence interval.18

A normal distribution has a Skew of zero. Skew is nega-
tive if the distribution has a long tail to the left (smaller)

or positive if there is a long tail to the right. Large Skew
indicates the presence of one or more outliers that need
to be examined carefully, or a mixture of samples whose
means differ substantially, or in general, that the distribu-
tion is not normal, and hence one must be very careful in
the interpretation of the Mean. 

16 Benchmarks that run for a fixed time and produce a metric of (units of
work done) are very convenient in this regard, as they work well for many
years. Unfortunately, many real programs do not work this way.

17 This fact has often been used in benchmarketing, creating meaneuvers
to use benchmarks whose particular size favors one side or the other.

18 In Excel, the relevant functions are AVERAGE, STDEV, SKEW, and
KURTOSIS.  CONFIDENCE is used for confidence interval calculations.

A normal distribution has a Kurtosis of zero.  Positive
Kurtosis indicates a peakier distribution more concen-
trated around its mean, and a negative Kurtosis one
spread further than a normal distribution. A strongly
positive Kurtosis probably means that the sample con-
tains many elements whose values are correlated. 

One would also want to compute the X% (commonly
95%) confidence interval, i.e., the interval that has X%
chance of including the real population mean, as the
sample mean, of course, is only an estimator.

6.5 Normal and lognormal distributions 
If a distribution is not normal, it is standard practice to 
hunt a transformation of the data that might yields a nor-
mal, compute the statistics on the transformed data, and
then invert the transformation to return to the domain of
the original data. In any case, people use Goodness-of-
Fit metrics, such as the Coefficient of Determination, to
find transformations that work acceptably.

Of particular interest here is the lognormal distribution,
i.e., one for which ln Xi (or any log, such as log10 Xi )  is
normal.  Normal distributions arise by aggregations of
many additive effects, while lognormals arise from com-
binations of multiplicative effects, like clock rate differ-
ences, compiler optimizations, or memory system design
differences.  Good discussions of log-normal (or log-
normal) distributions can be found in Limpert and Stahel
[27], from which the following figure are taken, and in 
more detail in Limpert, Stahel, and Abbt [28].

Figure 1(a) shows the appearance of a distribution with
mean 100 and standard deviation 2. It has the character-
istic appearance of a lognormal distribution, and of
course, the mean (100) does not appear a good measure
of central tendency, given the large Skew.
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Figure 1 –Limpert and Stahel[27]

Using a log10 transformation, Figure 1(b) now looks like
a typical normal distribution, its mean is computed as 
usual, and then back-transformed:

In a normal distribution, 68% of  the data would lie in the
interval Mean +/- Standard Deviation in Fig b. 

A lognormal distribution with small standard deviation is
shaped like a normal distribution, so some data sets get
good fits with either. As the standard deviation increases,
the tail will stretch increasingly to the right, i.e., positive
Skew, and the fit with normal worsens.

6.6 Distributions of run-times Tij

It is difficult to find any distribution that generally fits 
distributions of run-times.  Suppose  Pi is run on Sj with 

every input ever given to Pi on any system.19  For each
Pi, the resulting distribution of Tij might be normal, with
tiny variance. It might be normal with substantial vari-
ance.  It might be any of several highly-skewed distribu-
tions, including lognormal.  It might have multiple dis-
crete peaks, possibly of arbitrary number.

Consider all the programs that might be run on Sj, each
with one input.  Is there any reason to believe that there
is a preferred distribution of run-times? If not, there is 
no reason to believe that any sample will have any par-
ticular distribution either.  Benchmarkers often adjust
times up or down via input changes. Weights are essen-
tially arbitrary, and so are weighted benchmark times
unless the workload is very well-characterized.

With good workload characterization, one may compute
reasonable statistics for programs (as used in that work-
load), but it is very difficult to say much about programs’
run-times independent of workload.  But normalized ra-
tios are a very different story.

6.7 Distribution of performance ratios Rij

Rij (for j!=base) cannot, in general, be normally distrib-
uted, because it produces impossible results for both sim-
ple examples and real cases. Suppose  S1 and S2 are
systems whose performance is clearly equal, but making
either the base causes the other to look 1.25X faster. This
simply cannot be true, as meaningful statistics should not
be changed just by labeling. The sums of the logarithms
add to zero, as one would expect of equal systems.

S1 S2

Ti1 Ti2

P1 2.00 4.00

P2 4.00 2.00

Ri11 Ri21 ln(Ri21)

P1 1.00 0.50 -0.69

P2 1.00 2.00 0.69

AM 1.00 1.25 0.00

GM 1.00 1.00

Ri12 Ri12 ln(Ri11)

P1 0.50 1.00 -0.69

P2 2.00 1.00 0.69

AM 1.25 1.00 0.00

GM 1.00 1.00

GMMean

n

x

xx

A

n

i
iA

)exp(

10
1

1

log

Table 3 - Another example of AM of ratios

19 A large, but finite number.
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That example might seem contrived, but it is just a sim-
plified example from SPEC2000 results.

The EINUX A4800 (1800Mhz AMD Opteron) and IBM
eServer pSeries 690 Turbo (1700Mhz POWER4+) have
SPECint2000 scores of  1080 and 1077, respectively, i.e., 
identical. The Einux system is more than 2X faster than
the IBM on 197.parser, while IBM is more than 2X faster
on 181.mcf.20 Most of the ratios lie in the range .8X to 
1.2X. Overall, computing AMs of the SPECratios,
AM(IBM/Einux) = 1.08 and AM(Einux/IBM) = 108, so
each machine is “faster” than the other.

The lognormal distribution has other useful properties.,
mostly derived from knowing ln(X/Y) = - ln(Y/X).
The first 4 statistical moments have useful identity or
symmetry properties.

1. AM(ln(Rijk)) = -AM(ln(Rikj))
 GM(Rijk) = 1/GM(Rikj)

2. STDEV(ln(Rijk)) = STDEV(ln(Rikj))

3. SKEW(ln(Rijk)) = - SKEW(ln(Rikj))

4. KURTOSIS(ln(Rjk)) = Kurtosis(ln(Rkj))

The first moment, has the desired property that the rela-
tive performance of two machines is simply inverted
upon swap of base. The second moment and fourth mo-
ment are invariant, and the third moment changes sign.
Using a logarithmic scale, swapping base moves the
mean to its new point, then maintains the same shape of 
the distribution, inverted left for right.

Finally:

5. GM(Rijl) = GM(Rijk) / GM(Rilk)

Having computed the GM of two machines relative to
Sk, one can compute the GM of those machines by divid-
ing the corresponding GMs.

However, the higher moments do not work that way, be-
cause the GM only describes the Mean, not the shape .
For example, Sj might use the same CPU as Sk, but with
higher clock rates, and one would expect it to have
GM>1, and a small STDEV, and SKEW and KURTOSIS
near zero.  Suppose GM(Sl) = GM(Sj), but is a different
system with different strengths. One would expect it to
have larger STDEVs, SKEWs and KURTOSIS, because
it is “more different” from Sk than Sj is. 

20 As of this writing. Presumably compiler people are working hard.  The
SPEC  reference #s for the two files are #02136 and #02097. [29]

Real-world performance ratio distributions need more
study to assure they are well-modeled by lognormals,21

or at least know the cases in which they do not.  For now,
it is assumed, and examples will be analyzed .

7 SERPOP Analysis Examples

7.1 Textbook Example 1 
A well-known example  is found in Smith [3], and used
in Hennessy and Patterson [7], p.35-37, combining Fig-
ures 1.15 and 1.16, giving runtimes in seconds:

Systems Weightings

S1 S2 S3 W(1) W(2) W(3)

P1 1.00 10.00 20.00 0.500 0.909 0.999

P2 1000.00 100.00 20.00 0.500 0.091 0.001

Total 1001.00 110.00 40.00

AM:W(1) 500.50 55.00 20.00

AM:W(2) 2.00 18.19 20.00

AM:W(3) 91.91 18.19 20.00

Table 4 - Hennessy and Patterson [7]

The GM’s known properties are described, with note:
In general, there is no workload for three or more ma-
chines that will match the performance predicted by the
geometric means of normalized execution times.

This is a WAW analysis, which has its own set of as-
sumptions about knowledge of the run-times and
weights. The example clearly shows that one must know 
the weightings to know anything at all about the relative
performance of the systems on such workloads.

Consider a SERPOP analysis instead, to understand what
may be known about the relative performance distribu-
tions of these systems. The next table converts the data
to ratios, then shows the logs of the ratios, and computes
AM, STDEV, and 95% confidence levels. The Mean and
confidence levels are transformed back to the original
ratio domain. It is not surprising that S1 and S2 have
equal GMs, and S3 is considered faster.  Of course, the 
confidence interval is immense, which says that nothing
of substance is really known about the relative perform-
ance of these systems independent of workload weight-
ings. Any pair of systems with a range of relative per-
formance ratios can be made by workload choices to look
faster or slower.
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S1 S2 S3

Ri11 Ri21 Ri31

P1 1.00 0.10 0.05

P2 1.00 10.00 50.00

Logs ln(Ri11) ln(Ri21) ln(Ri31)

P1 0.00 -2.30 -3.00

P2 0.00 2.30 3.91

AM 0.00 0.00 0.92

STDEV 0.00 3.26 4.88

95%Low 0.00 -9.91 -13.94

95% High 0.00 9.91 15.78

Exp

Mean(GM) 1.00 1.00 2.50

95%Low 1.00 0.00 0.00

95% High 1.00 20075 7110810

Table 5 - Analysis of Table 4

7.2 Textbook Example 2 
Lilja [6] uses a similar example, and writes:

Unfortunately, although the geometric mean produces a 
consistent ordering of the systems being compared, it is
the wrong ordering.

Systems

Program S1 S2 S3

P1 417 244 134

P2 83 70 70

P3 66 153 135

P4 39449 33527 66000

P5 772 368 369

GM 587 503 499

Rank 3 2 1

Table 6 - Lilja[6], p. 33.

This was a WAW analysis as well. Using S1 as a base
for a SERPOP analysis, these results are obtained, in-
cluding SKEW and KURTOSIS, which require more data
points.

S1 S2 S3

Ri11 Ri21 Ri31

P1 1.00 1.71 3.11

P2 1.00 1.19 1.19

P3 1.00 0.43 0.49

P4 1.00 1.18 0.60

P5 1.00 2.10 2.09

Logs ln(Ri11) ln(Ri21) ln(Ri31)

P1 0.00 0.54 1.14

P2 0.00 0.17 0.17

P3 0.00 -0.84 -0.72

P4 0.00 0.16 -0.51

P2 0.00 0.74 0.74

AM 0.00 0.77 0.81

STDEV 0.00 0.61 0.79

Skew - -0.30 0.82

Kurtosis - 0.07 -0.75

95%Low 0.00 -1.08 -1.60

95% High 0.00 2.62 3.22

Exp

Mean(GM) 1.00 2.16 2.26

95%Low 1.00 0.34 0.20

95% High 1.00 13.73 25.09

Table 7 - Analysis of Table 6

First, the confidence intervals overlap substantially,
meaning there is little confidence that these systems are 
substantially different, and that serious workload charac-
terization must be done to make any predictions at all.
Second, S1 and S2 are more alike than they are with S3,
given the latter’s larger STDEV, SKEW, and
KURTOSIS.

8 SPEC2000 SERPOP Example 

8.1 The data
Following is data for the IBM eServer pSeries 690 Turbo
(1700 Mhz), SPEC serial #02136 for CINT200022 and 
#02137 for CFP2000,  labeled S2.  S1 is a Sun SPARC
Ultra 5-10, and its times Ti1 are measured, then rounded,
with inputs chosen to yield convenient run-times, and
used as the base values. The Ri21 values (SPEC base
ratios) are actually computed as Ri21 = 100 * Ti1/Ti2.23

The last two columns show ln(Ri21) and a z-score com-
puted from ln(Ri21) for Goodness-of-Fit analysis.

22 The serial # is the last component of the filename in SPEC’s archives,
and it is unique within a  benchmark suite.[29]

23 I.e., the SPARC Ultra-5 is essentially rated as 100.
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S1 S2 S2 S2 S2

Ti1 Ti2 Ri21* ln(R..) z(ln..)

197.parser 1800 398.0 452 6.11 -2.34

164.gzip 1400 175.0 800 6.68 -0.80

253.perlbmk 1800 217.0 829 6.72 -0.70

186.crafty 1000 106.0 943 6.85 -0.36

175.vpr 1400 133.0 1053 6.96 -0.06

254.gap 1100 98.6 1116 7.02 0.10

256.bzip2 1500 133.0 1128 7.03 0.12

176.gcc 1100 96.4 1141 7.04 0.16

252.eon 1300 96.7 1344 7.20 0.60

300.twolf 3000 213.0 1408 7.25 0.72

255.vortex 1900 114.0 1667 7.42 1.18

181.mcf 1800 99.8 1804 7.50 1.39

MEDIAN 1450 124 1122 7.02

HM 1462 131 1005 6.96

GM 1521 141 1077 6.97

AM 1592 157 1140 6.98

STDEV 540 88 377 0.37

SKEW 1.64 2.16 0.12 -0.96

KURTOSIS 3.74 5.19 0.07 1.76 EXP

95% lo 1252 102 903 6.75 853

95% hi 1591 155 1140 7.22 1360

Bin<m-2s 511 -19 386 6.24 513

Bin<m-s 1052 69 763 6.61 743

Bin<m 1592 157 1140 6.98 1077

Bin<m+s 2132 244 1517 7.35 1560

Bin<m+2s 2672 332 1894 7.72 2261

COEDET 0.940 0.88

Histogram R.. Hist ln(R..)

Bin Freq Bin Freq

386 0 6.24 1

763 1 6.61 0

1140 6 6.98 4

1517 3 7.35 5

1894 2 7.72 2

More 0 More 0

Table 8 - SPEC CINT2000 SERPOP Analysis

On the next page are plotted distributions using the bins
above, and z-plots that should approximate straight lines
for normal distributions. The COEDET is the Coefficient
of Determination

S1 S2 S2 S2 S2

Ti1 Ti2 Ri21* ln(R..) z(ln..)

200.sixtrack 1100 152.0 724 6.58 -1.65

177.mesa 1400 164.0 854 6.75 -1.31

172.mgrid 1800 173.0 1040 6.95 -0.90

188.ammp 2200 210.0 1048 6.95 -0.88

191.fma3d 2100 163.0 1288 7.16 -0.45

301.apsi 2600 193.0 1347 7.21 -0.36

173.applu 2100 151.0 1391 7.24 -0.29

189.lucas 2000 109.0 1835 7.51 0.29

187.facerec 1900 98.5 1929 7.56 0.39

171.swim 3100 145.0 2138 7.67 0.61

168.wupwise 1600 72.1 2219 7.70 0.68

179.art 2600 112.0 2321 7.75 0.78

183.quake 1300 44.1 2948 7.99 1.28

178.galgel 2900 76.4 3796 8.24 1.80

MEDIAN 2050 148.0 1613 7.38

HM 1881 111 1440 7.35

GM 1970 123 1598 7.36

AM 2050 133 1777 7.38

STDEV 597 49 864 0.48

SKEW 0.19 -0.29 0.99 0.07

KURTOSIS -0.69 -0.77 0.83 -0.69 EXP

95% lo 1708 105 1282 7.10 1214

95% hi 2392 161 2272 7.65 2104

Bin<m-2s 856 36 49 6.42 613

Bin<m-s 1453 84 913 6.90 989

Bin<m 2050 133 1777 7.38 1598

Bin<m+s 2647 182 2641 7.86 2581

Bin<m+2s 3244 230 3505 8.34 4169

COEDET 0.900 0.977

Histogram R.. Hist ln(R..)

Bin Freq Bin Freq

49 0 6.418 0

913 2 6.897 2

1777 5 7.377 5

2641 5 7.856 5

3505 1 8.335 2

More 1 More 0

Table 9 - SPEC CFP2000 SERPOP Analysis

the plot is a good fit to a normal distribution. The EXP
column back-transforms from ln(R..) to R.. domain.
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Table 10 - Distributions and z-scores
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8.2 Specific observations
Relative performance is always a distribution, not just a 
number. Assuming A1-A5, SERPOP analysis, using log-
normal distributions, works well, and yields standard
statistical results that quantify uncertainty.

While it is not generally valid to use the AM on a distri-
bution of ratios, in this case, with modest Standard De-
viation, normal and lognormal are close, so those num-
bers were included.

It is especially worth examining the 95% Confidence
limits [853-1360 and 1214-2104] as that offers a reason-
able estimate of the uncertainty, which of course, is 
mainly improved by increasing the sample size. The
COEDET value for ln(R..) indicates the goodness of it,
and that is worth checking. In this case, the normal as-
sumption fits slightly better for CINT2000, and the log-
normal slightly better for CFP2000.  More studies will 
appear in future papers, but so far, examination of several
sets of data from LFK, DR CPU2, and SPEC look prom-
ising, i.e., with lognormal having a good fit, and usually
better than the normal fit, as skew increases. That is no
surprise, mathematically.

SKEW and KURTOSIS have fairly small values here;
large SKEW numbers indicate care must taken, as do
large negative KURTOSIS, and large STDEV. These
indicate unusual outliers, or perhaps indicate that the
benchmark set contains codes with radically different
characteristics.  For example, in looking at LFK this way,
simple scalar machines tend to have well-behaved distri-
butions. Vector or parallel systems tend to show several
distinct performance clusters. A large positive
KURTOSIS probably indicates that systems being com-
pared are tightly related, or else there is a subset of
benchmarks that are unusually well-correlated.

9 Conclusion
WCA, SERPOP, and WAW are all needed, and they 
sometimes need differing mathematical treatments. 

Mathematically, it is somewhat strange to compute AM,
GM, and HM on the same sample of anything, i.e., the
appropriate choice depends on knowledge of the popula-
tion’s distribution, which may not be available.  Perhaps
people use them intuitively as a measure of dispersion, if 
that is otherwise not available. Alternatively, it may be
that (as in LFK) they are used as surrogates for different
populations that have been mixed together, i.e., including
vector and parallel systems with serious code tuning (that
achieve AM) and small-cache micros (that only yield 

HM), with GM being a middle estimate. This is some-
what akin to SPEC’s use of Base and Peak ratios. 

It is very non-obvious to specify a single distribution that
usefully describes run-times in general. Computing
means on samples of unknown distributions is indeed
statistically chancy, even if the algebra works.

The GM is seen as vital to SERPOP analyses, as there are
many reasons to believe that distributions of performance
ratios are better modeled by lognormal distributions than
by normal ones. The former is more general, and the lat-
ter has serious statistical problems in the presence of
skewed distributions, and even claims that two systems
are each faster than  the other in real examples. The use
of ratios in this case converts unknown run-time distribu-
tions into a well-understood lognormal distribution
whose analysis is easy.

There is much work to do, but perhaps it is time for truce
in the War of Means. 
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