Logic Circuits INEL4205

Nayda Santiago

Office hours

- MWF 9:00- 10:30am
- S413

Digital Systems and Binary Numbers

Chapter 1

Digital Systems

- Can you give me an example of an electronic device that is not digital?
- What advantages do digital systems have?
- Why the name "digital"?
- Signals in most present day digital systems are binary: 0 1
- Binary digIT \rightarrow BIT
- Groups of bits can be made to represent discrete symbols

Digital Systems

- Digital quantities emerge from:
 - Discrete measurements
 - Quantized from a continuous process
- Digital systems are composed of digital modules
- Need to understand digital circuits and their logical function

Decimal Number (Base 10) 7392.45

$7x10^{3}$ + $3x10^{2}$ + $9x10^{1}$ + $2x10^{0}$ + $4x10^{-1}$ + $5x10^{-2}$

 $a_n a_{n-1} a_{n-2} \dots a_0 \dots a_{-1} a_{-2} \dots a_{-m}$

Decimal Number (Base 10)

 $a_n x 10^n + a_{n-1} x 10^{n-1} + ... a_0 x 10^0 + ... a_{-m} x 10^{-m}$

Binary Number (Base 2) 11001.11

$1x2^{4}+1x2^{3}+0x2^{2}+0x2^{1}+1x2^{0}+1x2^{-1}+1x2^{-2}$ $1x16+1x8+0x4+0x2+1x1+1x2^{-1}+1x2^{-2}$ 25.75

 $a_n a_{n-1} a_{n-2} \dots a_0 . a_{-1} a_{-2} \dots a_{-m}$ Number Base *r* $A_n \times r^n + a_{n-1} \times r^{n-1} + ... a_0 \times r^0 + ... a_{-m} \times r^{-m}$

Number Base 8 \Rightarrow (732.45)₈

$7x8^{2} + 3x8^{1} + 2x8^{0} + 4x8^{-1} + 5x8^{-2}$

7x64+ 3x8+2x1+4x8⁻¹+5x8⁻²

474.578125

Table 1.1Powers of Two

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

 $a_n a_{n-1} a_{n-2} \dots a_0 . a_{-1} a_{-2} \dots a_{-m}$ Number Base *r* $A_n \times r^n + a_{n-1} \times r^{n-1} + ... a_0 \times r^0 + ... a_{-m} \times r^{-m}$

Exercises: Convert the following numbers to decimal: 1)(10111.001)₂ 2)(7532.42)₈

Arithmetic operations with numbers in base r follow the same rules as for decimal numbers. Examples:

Augend	101101	Minuend	101101	Multiplicand	1011
Addend	+100111	Subtrahend	-100111	Multiplier	X101
Sum:	1010100	Difference	000110		1011
					0000
					1011
				Product	110111

Exercises: Carry out the following operations: 1)(1011.11+1100)₂ 2)(5732-723)₈

Conversion to binary

	Integer Quotient		Remainder	Coefficient
41/2=	20	+	1/2	<i>a</i> ₀ =1
20/2=	10	+	0	<i>a</i> ₁ =0
10/2=	5	+	0	<i>a</i> ₂ =0
5/2=	2	+	1/2	<i>a</i> ₃ =1
2/2=	1	+	0	<i>a</i> ₄ =0
1/2=	0	+	1/2	<i>a</i> ₅ =1

Conversion to binary

Conversion to octal

(231)⁸

Exercises

Convert $(1024)_{10}$ to binary

Convert $(1024)_{10}$ to octal

Conversion to binary

	Integer		Fraction	Coefficient
0.6875x2=	1	+	0.3750	<i>a</i> _1=1
0.3750x2=	0	+	0.7500	<i>a</i> _2=0
0.7500x2=	1	+	0.5000	a=1
0.5000x2=	1	+	0.0000	<i>a</i> =1

Conversion to octal

	Product	Integer	Coefficient
0.513x8=	4.104	4	<i>a</i> ₋₁ =4
0.104x8=	0.832	0	<i>a</i> ₋₂ =0
0.832x8=	6.656	6	<i>a</i> _3=6
0.656x8=	5.248	5	<i>a</i> _4=5
0.248x8=	1.984	1	<i>a</i> _4=1
0.984x8=	7.872	7	a_4=7
0.872			

Exercises

Convert $(3.2154)_{10}$ to binary

Convert (9.113)₁₀ to octal

Octal and Hexadecimal Numbers

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Table 1.2Numbers with Different Bases

Complements

- Simplify subtraction and logical manipulation
- Simpler, less expensive circuits
- Two types of complements
 - Radix Complement (r's complement)
 - Diminish Radix Complement ((r-1)'s complement)

Diminished Radix Complement

9's complement of 546700 is 999999-546700 =453299 9's complement of 012398 is 999999-012398 =987601 1's complement of 1011000 is 1111111-1011000 =0100111 1's complement of 0101101 is 1111111-0101101 =1010010

Radix Complement

10's complement 546700 is 100000-546700 =453300 of 10's complement 012398 is 100000-012398 =987602 of 2's complement of 1011000 is 1000000-=0101000 10000-2's complement of 0101101 is =1010011 0101101

Radix Complement

- 10's complement
 - Leave all least significant zeros unchanged
 - Subtract the least significant non-zero digit from 10
 - Subtract all other digits from 9
- 2's complement
 - Leave all least significant 0's and the first 1 unchanged
 - Replace all other 1's with 0's, and 0's with 1's in all other significant digits

Diminished Radix Exercises

- Compute 9's complement of
 - 0912367
 - 82917364
 - 9999999
- Compute 1's complement of
 - -11001101
 - -00000000

Radix Exercises

- Compute 10's complement of
 - 0912367
 - 82917364
 - 9999999
- Compute 2's complement of
 - -11001101
 - 0000000
- Compare results with diminished radix comp.

Subtraction with Complements

- Subtraction of two *n*-digit unsigned numbers
 M-*N* in base *r* is as follows
 - 1. Add the minuend *M* to the *r*'s complement of the subtrahend *N*: $M + (r^n N) = M N + r^n$
 - 2. If $M \ge N$ the sum will produce an end carry r^n which can be discarded
 - 3. If $M \le N$ the sum does not produce and end carry and is equal to $r^n - (N - M)$, which is the r's complement of (N - M). Take the r's complement and place a negative sign in front.

Using 10's complement, subtract 72532 - 3250

М	=	72532
10's complement of N	=	96750
Sum	=	169282
Discard end carry	=	-100000
Answer	=	69282

Using 10's complement, subtract 3250 - 72532

M	=	03250
10's complement of N	=	27468
Sum	=	30718
10's complement of Sum	=	69282
Answer	=	69282

Using 2's complement, subtract 1010100 - 1000011

M	=	1010100
2's complement of N	=	+0111101
Sum	=	10010001
Discard end carry 2 ⁷	=	-10000000
Answer	=	0010001

Using 2's complement, subtract 1000011 - 1010100

M	=	1000011
2's complement of N	=	+0101100
Sum	=	1101111
(No carry) 2's complement of Sum	=	-0010001
Answer	=	-0010001

Using 1's complement, subtract 1010100 - 1000011

M	=	1010100
1's complement of N	=	+0111100
Sum	=	10010000
End around carry	=	+1
Answer	=	0010001

Using 2's complement, subtract 1000011 - 1010100

M	=	1000011
1's complement of N	=	0101011
Sum	=	1101110
(No carry) 1's complement of Sum	=	-0010001
Answer	=	-0010001

Exercise

- Subtract 28934 3456
- Subtract 3456 28934
- Subtract 110010 110100
- Subtract 0110011 0100001

- Unsigned and Signed numbers are bit strings
- User determines when a number is signed or unsigned
- When signed, leftmost bit is the sign: 0 positive; 1 negative
- Convenient to use *signed-complement* system for negative numbers

Number of bits	Number	System	Positive	Negative
8	9	Signed-magnitude	00001001	10001001
8	9	Signed-Complement 1's	00001001	11110110
8	9	Signed-Complement 2's	00001001	11110111

Table 1.3Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	—	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000		

Arithmetic addition

+6	00000110	-6	11111010
+13	00001101	+13	00001101
+19	00010011	+7	00000111
+6	00000110	-6	11111010
-13	11110011	-13	11110011
-7	11111001	-19	11101101

Arithmetic subtraction

$$(\pm A)$$
 - $(+B)$ = $(\pm A)$ + $(-B)$
 $(\pm A)$ - $(-B)$ = $(\pm A)$ + $(+B)$

To convert a positive number into a negative number take the complement

Binary Codes

Table 1.4Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD addition

- Since each digit must no exceed 9, worst case is 9+9+carry digit=9+9+1=19
- Result in the range 0 to 19, *i.e.*, 0000 to 1 1001
- If result less than or equal 9, no problem
- If result greater or equal 10, *i.e.*, 1010, add 6 (0110) to convert result to correct BCD and carry, as required

BCD addition

4	0100	4	0100	8	1000
+5	+0101	+8	+1000	+9	+1001
9	1001	12	1100	17	10001
			+0110	_	+0110
			10010	_	10111

Other decimal Codes

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Gray code

Table 1.6 Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

ASCII Code

 Table 1.7

 American Standard Code for Information Interchange (ASCII)

				b7b6b5	à.			
b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	Р		р
0001	SOH	DC1	1	1	A	Q	a	q
0010	STX	DC2	••	2	в	R	b	r
0011	ETX	DC3	#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	*	7	G	w	g	w
1000	BS	CAN	(8	н	x	h	x
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	aļu	:	J	Z	j	Z
1011	VT	ESC	+		K	1	k	{
1100	FF	FS		<	L	N	1	1
1101	CR	GS	1 <u>1</u> 1		M	1	m	}
1110	SO	RS		>	N	~	n	~
1111	SI	US	1	?	0		0	DEL

ASCII Code

Control characters					
NUL	Null	DLE	Data-link escape		
SOH	Start of heading	DC1	Device control 1		
STX	Start of text	DC2	Device control 2		
ETX	End of text	DC3	Device control 3		
EOT	End of transmission	DC4	Device control 4		
ENQ	Enquiry	NAK	Negative acknowledge		
ACK	Acknowledge	SYN	Synchronous idle		
BEL	Bell	ETB	End-of-transmission block		
BS	Backspace	CAN	Cancel		
HT	Horizontal tab	EM	End of medium		
LF	Line feed	SUB	Substitute		
VT	Vertical tab	ESC	Escape		
FF	Form feed	FS	File separator		
CR	Carriage return	GS	Group separator		
SO	Shift out	RS	Record separator		
SI	Shift in	US	Unit separator		
SP	Space	DEL	Delete		

Error-detecting code

			With Even Parity	With Odd Parity	
ASCII A	=	1000001	01000001	11000001	
ASCII T	=	1010100	11010100	01010100	

Binary Storage and Registers

- Binary Cell: device with two stable states and capable to store one bit (0 or 1)
- Register: A group of binary cells
- Register Transfer: basic operation to transfer binary information from one set of registers to another

Binary Storage and Registers Transfer of information among registers

Figure Number: 01 01 Mano/Ciletti Digital Design, 4e

Binary Storage and Registers Example of binary information processing

Figure Number: 01 02 Mano/Ciletti Digital Design, 4e

Binary Logic

Table 1.8Truth Tables of Logical Operations

AND		0	R	Ν	OT
$x y \mid x$	• y x	y	x + y	X	<i>x</i> ′
0 0	0 0	0	0	0	1
0 1	0 0	1	1	1	0
1 0	0 1	0	1		I
1 1	1 1	1	1		

(a) Three-input AND gate

(b) Four-input OR gate

Figure Number: 01 06.02 P1.36 Mano/Ciletti Digital Design, 4e

Homework Assignment Chapter 1

- 1.1 1.25
- 1.3 1.28
- 1.9 1.34
- 1.10 1.35
- 1.14 1.36
- 1.15
- 1.18
- 1.21

Notice

Some of the figures and tables in this set of slides are obtained from material supplied by Pearson Prentice Hall to the instructor of the course and is copyrighted. Copy of this material in whole or in part without the permission of the textbook authors is prohibited.