Table 9.1 Terminology Related to Asymmetric Encryption

Asymmetric Keys

Two related keys, a public key and a private key that are used to perform complementary operations, such as encryption and decryption or signature generation and signature verification.

Public Key Certificate

A digital document issued and digitally signed by the private key of a Certification Authority that binds the name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)

A set of policies, processes, server platforms, software and workstations used for the purpose of administering certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key certificates.

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06]

Public-Key Encryption
Needed to Work:
1. One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.
2. The sender and receiver must each have one of the matched pair of keys (not the
same one).
Needed for Security:
1. One of the two keys must be kept secret.
2. It must be impossible or at least impractical to decipher a message if no
other information is available.
3. Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.

Table 9.2 CONVENTIONAL AND PUBLIC-KEY ENCRYPTION

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Table 9.3 Applications for Public-Key Cryptosystems

			7							
b_i	1	0	0	0	1	1	0	0	0	0 560 1
С	1	2	4	8	17	35	70	140	280	560
f	7	49	157	526	160	241	298	166	67	1

Table 9.4 Result of the Fast Modular Exponentiation Algorithm for $a^b \mod n$,
where a = 7, b = 560 = 1000110000, and n = 561

Number of Decimal Digits	Approximate Number of Bits	Date Achieved	MIPS-Years	Algorithm
100	332	April 1991	7	Quadratic sieve
110	365	April 1992	75	Quadratic sieve
120	398	June 1993	830	Quadratic sieve
129	428	April 1994	5000	Quadratic sieve
130	431	April 1996	1000	Generalized number field sieve
140	465	February 1999	2000	Generalized number field sieve
155	512	August 1999	8000	Generalized number field sieve
160	530	April 2003 –		Lattice sieve
174	576	December 2003	—	Lattice sieve
200	663	May 2005	—	Lattice sieve

Table 9.5 Progress in Factorization

Complexity	Size	Operations
$\log_2 n$	$2^{10^{12}} = 10^{3 \times 10^{11}}$	1012
N	10 ¹²	10 ¹²
n^2	106	10 ¹²
n ⁶	102	10 ¹²
2 ⁿ	39	10 ¹²
<i>n</i> !	15	10 ¹²

Table 9.6 Level of Effort for Various Levels of Complexity