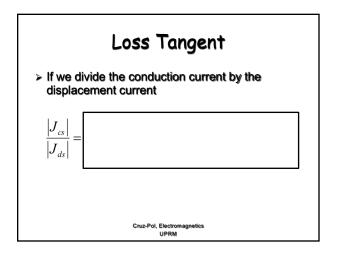
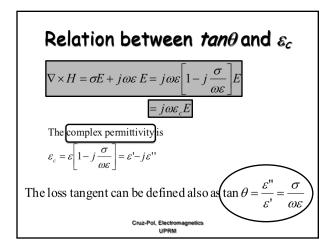
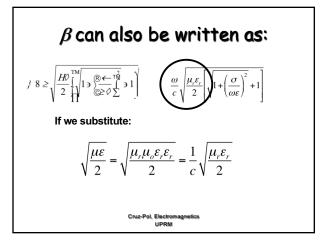
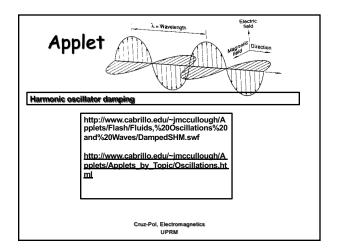
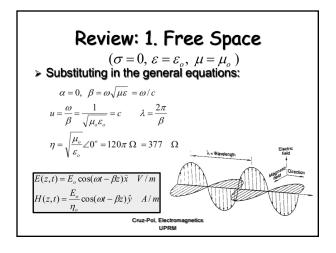

So				
➤ Wave like this	Moves towards:			
$H(z,t) = A\cos(\omega t - \beta z)\hat{x}$	$+\hat{z}$			
$E(z,t) = A\cos(\omega t + \beta z)\hat{y}$	$-\widehat{z}$			
$E(y,t) = A\cos(\omega t + \beta y)\hat{x}$	$-\hat{y}$			
$H(x,t) = A\cos(\omega t - \beta x)\hat{z}$	$+\hat{x}$			
Cruz-Pol, Electromagnetics UPRM				

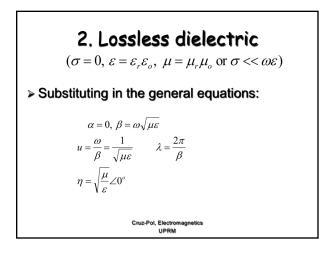


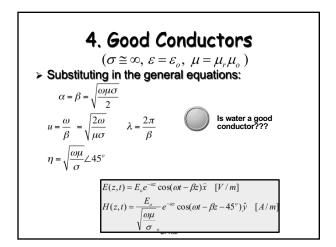


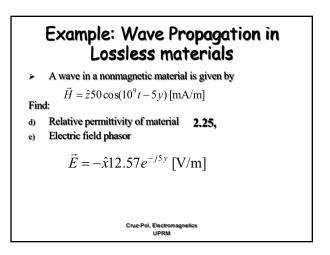


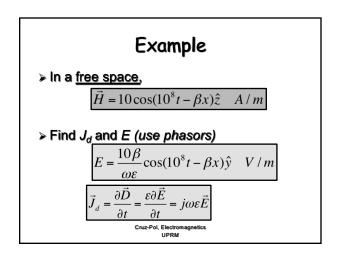


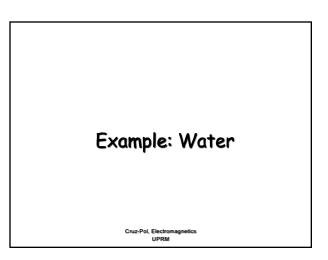


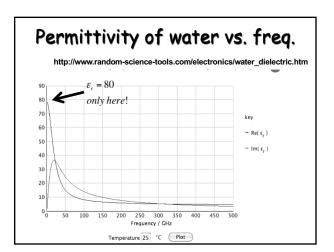


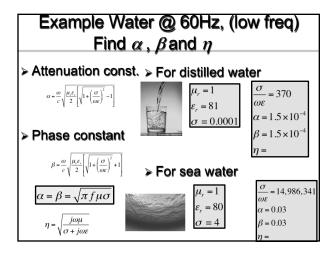

Summary					
	Any medium	Lossless medium (σ=0)	Low-loss medium (8"/8' <1/100)	Good conductor (s[#]/s' >100)	Units
a	$\frac{\omega}{c} \sqrt{\frac{\mu_r \varepsilon_r}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2} - 1 \right]}$	0	$\frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\pi f \mu \sigma}$	[Np/m]
ß	$\omega \sqrt{\frac{\mu \varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 + 1} \right]$	$\omega\sqrt{\mu\varepsilon}$ $\omega\sqrt{\mu_r\varepsilon_r}/\omega$	$\omega\sqrt{\mu\varepsilon}$	$\sqrt{\pi f \mu \sigma}$	[rad/m]
η	$\sqrt{\frac{j\omega\mu}{\sigma+j\omega\varepsilon}}$	$\sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\frac{\mu}{\varepsilon}}$	$(1+j)\frac{\alpha}{\sigma} = \sqrt{\frac{\omega\mu}{\sigma}}$	_{45'} [Ω]
Uc	ω/β	$\frac{1}{\sqrt{\mu\varepsilon}}$	$\frac{1}{\sqrt{\mu\varepsilon}}$	$\sqrt{\frac{4\pi f}{\mu\sigma}}$	[m/s]
λ	$\frac{2\pi}{\beta} = \frac{u_p}{f}$	$\frac{u_p}{f}$	$\frac{u_p}{f}$	$\frac{u_p}{f}$	[m]
	**In free space; ε_0 =	=8.85 x 1	0 ⁻¹² F/m μ _o =	=4π x 10 ⁻⁷ H/m	

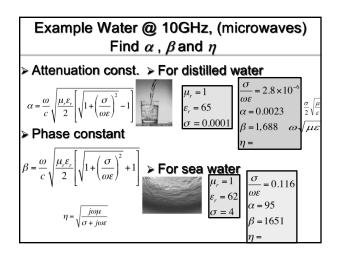


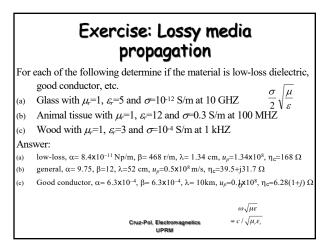


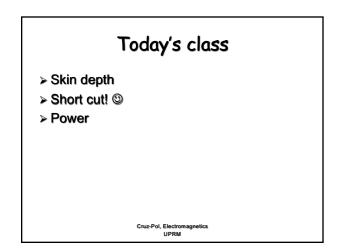


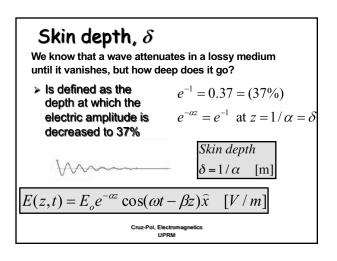


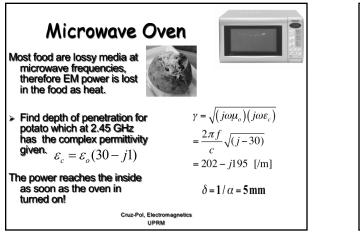

Summary					
	Any medium	Lossless medium (σ=0)	Low-loss medium (8"/8'<1/100)	$\frac{\mathcal{E}^{''}}{\mathcal{E}^{'}} = \frac{\sigma}{\omega \varepsilon} > 100$	Units
α	$\frac{\omega}{c} \sqrt{\frac{\mu_r \varepsilon_r}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2} - 1 \right]$	0	$\frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\pi f \mu \sigma}$	[Np/m]
ß	$\omega \sqrt{\frac{\mu \varepsilon}{2} \left[\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2 + 1} \right]}$	$\omega\sqrt{\mu\varepsilon}$ $\omega\sqrt{\mu_r\varepsilon_r}/\omega$	$\omega\sqrt{\mu\varepsilon}$	$\sqrt{\pi f \mu \sigma}$	[rad/m]
η	$\sqrt{\frac{j\omega\mu}{\sigma+j\omega\varepsilon}}$	$\sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\frac{\mu}{\varepsilon}}$	$(1+j)\frac{\alpha}{\sigma} = \sqrt{\frac{\omega\mu}{\sigma}} \Delta d$	45° [Ω]
Uc	ω/β	$\frac{1}{\sqrt{\mu\varepsilon}}$	$\frac{1}{\sqrt{\mu\varepsilon}}$	$\sqrt{\frac{4\pi f}{\mu\sigma}}$	[m/s]
λ	$\frac{2\pi}{\beta} = \frac{u_p}{f}$	$\frac{u_p}{f}$	$\frac{u_p}{f}$	$\frac{u_p}{f}$	[m]
	**In free space; ε_0	-8.85 x 1	0 ⁻¹² F/m	μ _o =4π x 10 ⁻⁷ H/m	

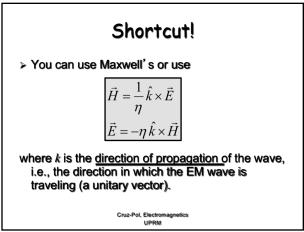


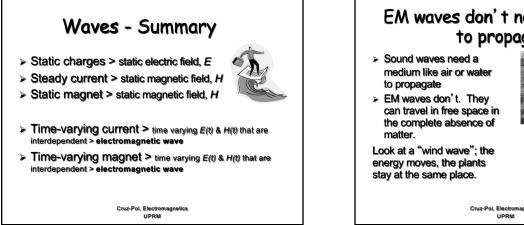


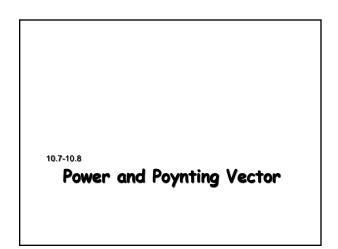


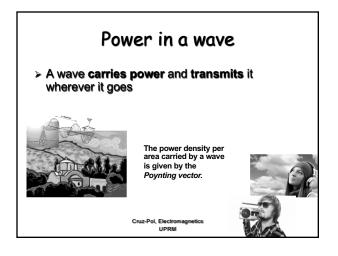


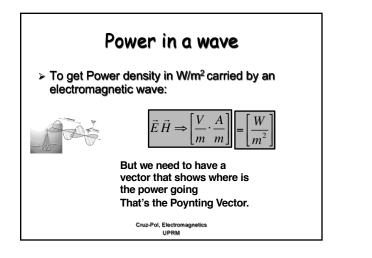


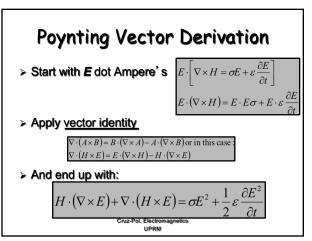


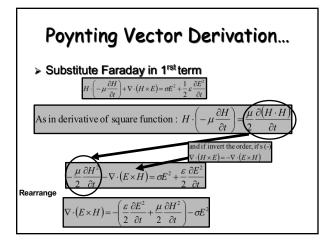


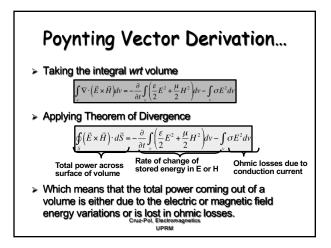


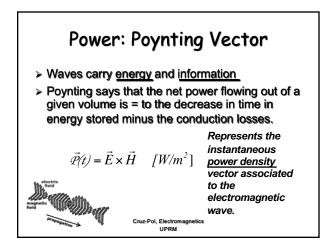


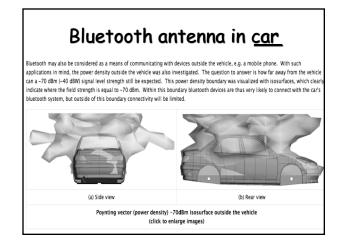


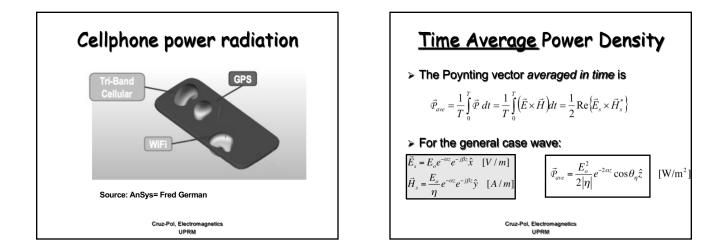


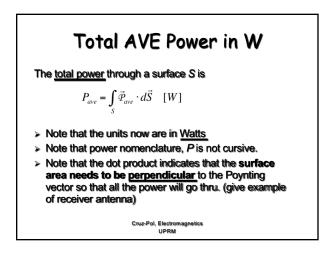


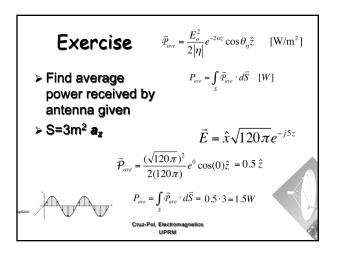


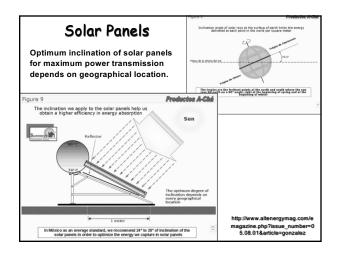


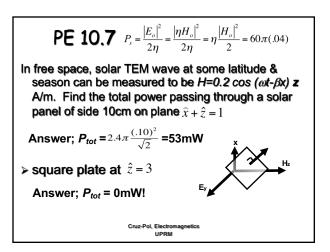


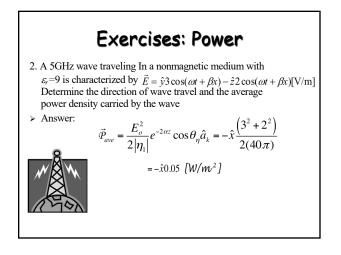


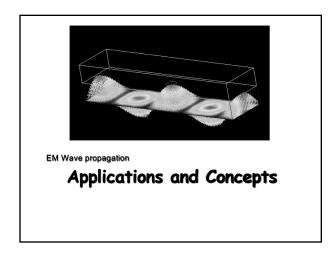


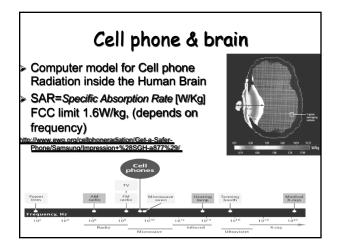


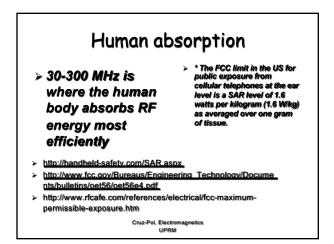


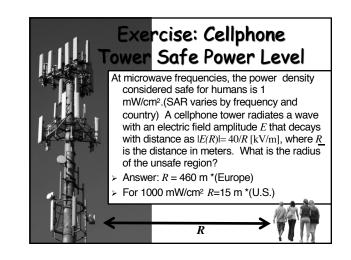


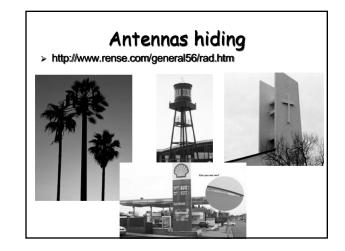











ICNIRP= Intl Commission of Non-ionizing radiation protection ICNIRP (1998:511) reference levels for occupational & general public exposure- table7					
Frequency range	Electric field strength (V/m)		Equivalent plane wave power density S _{eq} (W/m ²)		
	general public	occupational	general public	Occupational	
1-25 Hz	10,000	20,000			
0.025- 0.82 KHz	250/f(KHz)	500/f(KHz)			
0.82 -3 KHz	250/f(KHz)	610			
3-1000 KHz	87	610			
1-10 MHz	87/f ^{1/2} (MHz)	610/f (MHz)			
10-400 MHz	28	61	2	10	
400-2000 MHz	1.375f 1/2 (MHz)	3f 1/2 (MHz)	f/200	f/40	
2-300 GHz	61	137	10	50	

Some internationally allowed standard levels of the of cell tower radiation

- Australian standard limits the radiation level to 200 mW/cm²
- Russia, Italy and Canada allows only 10 mW/cm²
- > China, 6 mW/cm²
- > New Zealand 0.02 mW/cm².
- > United States allows 580 to 1,000 mW/cm²

Radiofrequency Radiation Health Studies, Minalasa America Sile Consumer Information Package, Sage Associates, Montecito, CA, 2000, www. sageassociates, net, (b) Tower concerns should be health, not aesthetics, Burlington Free Press, January 12, 2001. UPRM

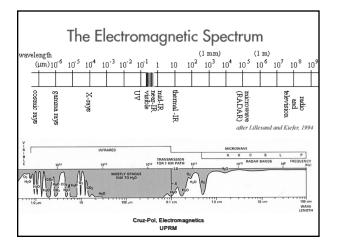
En 2011, la Organización Mundial de la Salud de

la ONU clasificó a los

teléfonos celulares en

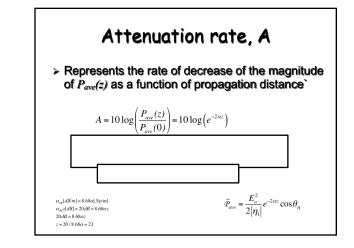
Categoría de Peligro de

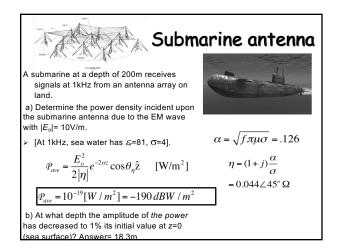
Cáncer, a pesar de que producen radiación no-

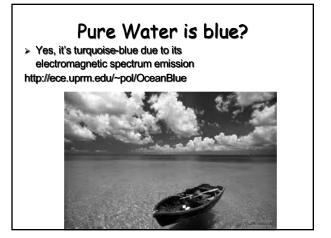

İonizante

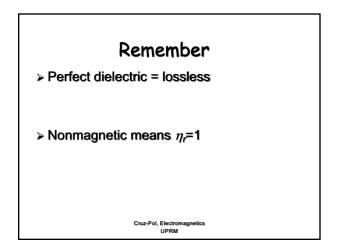
Mantén las llamadas cortas. Mantén distancia de 1" (2.5 cm) del cuerpo) Usa el cable auricular

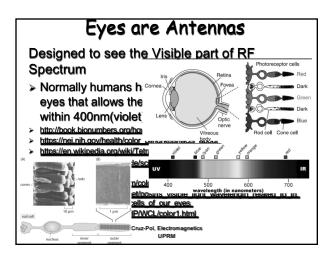
- Usa bocina altoparlante,
 - 5. Apaga el bluetooth y WiFi cuando no lo estés usando
 - Envía texto en vez
 *Coteia el nivel de r
 - *Coteja el nivel de radiación en tu modelo. Depende de la región. Los mismos modelos en Europa emiten menos radiación debido a exigencias de sus leyes. Busca en sarvalues.com SAR levels


6 Tips para Protegerte:


	Rad	ar bands	
Band Name	Nominal Freq Range	Specific Bands	Application
HF, VHF, UHF	3-30 MHz0, 30-300 MHz, 300- 1000MHz	138-144 MHz 216-225, 420-450 MHz 890-942	TV, Radio,
L	1-2 GHz (15-30 cm)	1.215-1.4 GHz	Clear air, soil moist
s	2-4 GHz (8-15 cm)	2.3-2.5 GHz 2.7-3.7>	Weather observations Cellular phones
С	4-8 GHz (4-8 cm)	5.25-5.925 GHz	TV stations, short range Weather
Х	8-12 GHz (2.5-4 cm)	8.5-10.68 GHz	Cloud, light rain, airplar weather. Police radar
Ku	12-18 GHz	13.4-14.0 GHz, 15.7-17.7	Weather studies
К	18-27 GHz	24.05-24.25 GHz	Water vapor content
Ka	27-40 GHz	33.4-36.0 GHz	Cloud, rain
V	40-75 GHz	59-64 GHz	Intra-building comm.
W	75-110 GHz	76-81 GH, 92-100 GHz	Rain, tornadoes
millimeter	110-300 GHz		Tornado chasers






Decibel Scale				
In many applications need comparison of two powers, a <u>power ratio</u> , e.g. reflected power, attenuated power, gain,				
The decibel (dB) scale is logarithmic				
$G = \frac{P_1}{P_2}$ $G[dB] = 10 \log\left(\frac{P_1}{P_2}\right)$				
Note that for voltages, fields, and electric currents, the log is multiplied by 20 instead of 10.				
Cruz-Pol, Electromagnetics UPRM				

