

Case 1: Conductor(2)	
• Medium 1: perfect dielectric, $\sigma_1=0$	
• Medium 2: perfect conductor, $\sigma_2 = \infty$	
Find intrinsic impedance α	
Coef. Of reflex & transmission $\int_{\sigma}^{(1+j)\frac{d}{\sigma}}$	
& E1 field	$\eta_2 = 0,$
	$\Gamma = -1, \tau = 0$
	$E_{1s} = -2JE_{io}\sin\beta_1 zx(phasor)$ $E_{1s}(z,t) = 2E_{1s}\sin\beta_2 z\sin(\alpha t\hat{x})$
	$L_1(z,t) = 2L_{i_0} \sin p_1 z \sin \omega t x$
http://www.phy.ntnu.edu.tw/java/waveSuperposition/waveSuperpo sition.html	

