	Capacitance and Resistance
	Sandra Crus-Pol, Ph. D. NEL 4151 Electromagnetics I ECE UPRM Mayagüez, PR

Relaxation Time

- Recall that:

$$
R=\frac{V}{I}=\frac{V}{\oint_{s} \sigma \vec{E} \cdot \overrightarrow{d s}} \quad C=\frac{Q}{V}=\frac{\varepsilon \oint_{s} \vec{E} \cdot d \vec{S}}{\oint_{1} \vec{E} \cdot d \vec{l}} \quad \text { FFarads }
$$

- Multiplying, we obtain the Relaxation Time:

$$
R C=\frac{\varepsilon}{\sigma}
$$

- Solving for R, we obtain it in terms of C :

$$
R=\frac{\varepsilon}{\sigma C}
$$

To find E, we will use:

from Gauss"s Law

$$
\begin{aligned}
& \nabla \cdot D=\nabla \cdot \varepsilon E=\rho_{v} \\
& E=-\nabla V
\end{aligned}
$$

From this we can get:

- Poisson's equation:
- Laplace's equation:
(if charge-free)

P.E. 6.8 find Resistance of disk of radius b and central hole of radius a.

Dr. S. Cruz-Pol, INEL 4151-
Electromagnetics I

Capacitance

1. Parallel plate
2. Coaxial
3. Spherical
$C=\frac{Q}{V}=\frac{Q}{\oint_{0}^{l} \vec{E} \cdot \overrightarrow{d l}}$

Capacitors connection

- Series $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
- Parallel $C=C_{1}+C_{2}$

Examples:

Electrical Engineering, UPRM (please print on BOTH sides of paper)

Electromagnetics I

Electrical Engineering, UPRM (please print on BOTH sides of paper)

