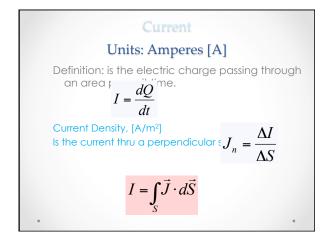
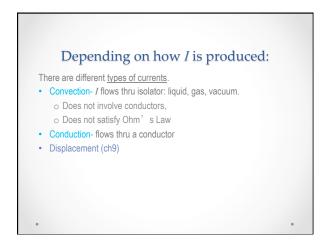
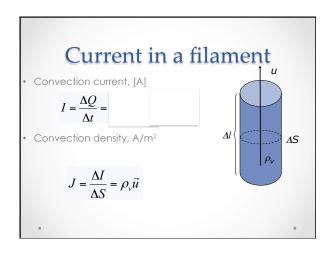
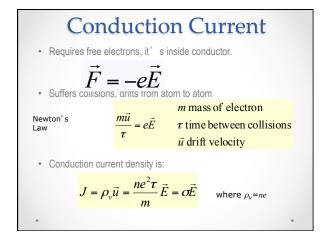
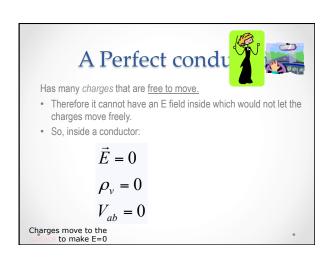

Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

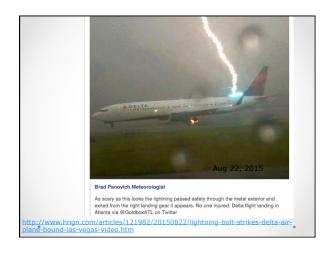


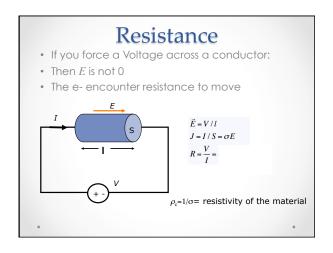


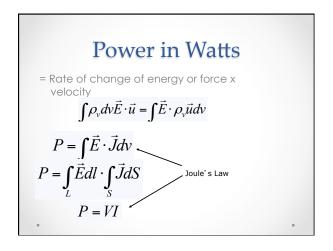


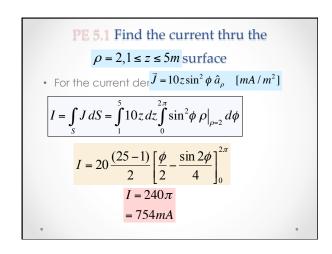

Material @ 20°C	Conductivity	Appendix B
& Low frequency	[S/m]	
Silver	6.1 x 10 ⁷	Conductors-have many free electrons available. Colder metals conduct better. (superconductivity) semiconductor Insulators at most lower frequencies.
Copper	5.8 x 10 ⁷	
Gold	4.1 x 10 ⁷	
Aluminum	3.5 x 10 ⁷	
Carbon	3 x 10 ⁴	
Sea water	4	
Silicon	4.4 x 10 ⁻⁴	
Pure water	10-4	
Dry Earth	10-5	
Glass, Quartz	10-12, 10-17	•

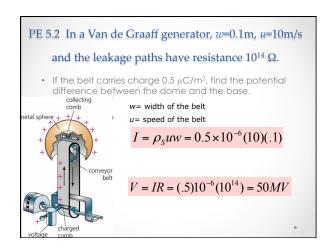



Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I

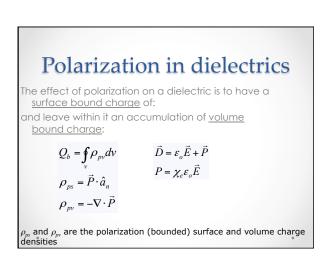








Dr. S. Cruz-Pol, INEL 4151-Electromagnetics I



PE 5.3 The free charge density in copper (Cu) is 1.81×10^{10} C/m³.

• For a current density of 8×10^6 A/m², find the electric field intensity and the drift velocity. $J = \rho_{\nu} u = \sigma E$ $E = \frac{J}{\sigma} = \frac{8 \times 10^6}{5.8 \times 10^7} = .138 \, V/m$ $u = \frac{J}{\rho_{\nu}} = \frac{8 \times 10^6}{1.81 \times 10^{10}} = 4.42 \times 10^{-4} \quad m/s$

Permittivity and Strength

• Not really a constant!

$$\vec{D} = \varepsilon \vec{E}$$

$$\varepsilon = \varepsilon_o \varepsilon_r$$

$$\varepsilon_r = 1 + \chi_e = \frac{\varepsilon}{\varepsilon_o}$$

Dielectric properties

- Linear = ε doesn' t change with E
- Isotropic= ε doesn' t change with direction
- Homogeneous= ε doesn' t change from point to point. Coulomb's Law for any material:

$$F_{12} = \frac{Q_1 Q_2}{4\pi\varepsilon_o \varepsilon_r R^2} \hat{a}_{12}$$

PE 5.6 A parallel plate capacitor with plate separation of 2mm has a 1kv voltage applied to its plane.

• If the space between its plates is filled with polystyrene, $\varepsilon_r = 2.55^{\text{find E}}$ and P.

$$\vec{E} = \frac{V}{d} = \frac{1000}{.002} = 500k\hat{a}_x V / m$$

$$\chi_e = \varepsilon_r - 1 = 1.55$$

$$\vec{P} = \chi_e \varepsilon_o \vec{E} = (1.55)(8.85 \times 10^{-12}) \cdot 5 \times 10^5 = 6.86 \hat{a}_x \mu C / m^2$$

PE 5.7 In a dielectric material, $E_x = 5V/m$ and $\vec{P} = \frac{1}{10\pi} (3\hat{a}_x - \hat{a}_y + 4\hat{a}_z) nC/m^2$

• Find: $\chi_e, \vec{E}, and \ \vec{D}$

$$\vec{P} = \varepsilon_o \chi_e \vec{B}$$

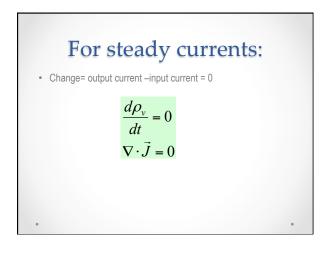
$$\vec{P} = \varepsilon_o \chi_e \vec{E} \qquad \chi_e = \frac{P_x}{\varepsilon_o E_x} = 2.16$$

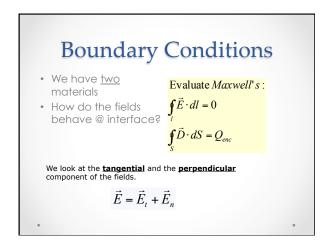
$$\vec{E} = \frac{\vec{P}}{\varepsilon_a \chi_a} = 5\hat{a}_x - 1.67\hat{a}_y + 6.67\hat{a}_z$$

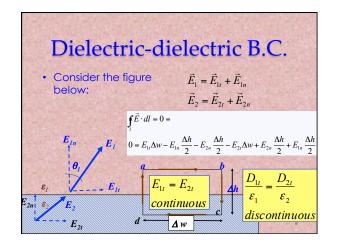
$$\vec{D} = \varepsilon_o \varepsilon_r \vec{E} = \frac{\varepsilon_r \vec{P}}{\chi_e} = 140 \hat{a}_x - 477 \hat{a}_y + 186 \hat{a}_z$$

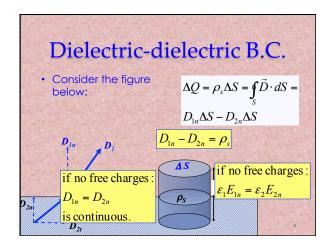
Questions?

Continuity Equation


· Charge is conserved.


$$I_{out} = \int \vec{J} \cdot d\vec{S} = \int \nabla \cdot \vec{J} \, dv$$


$$I_{in} = -\frac{dQ}{dt} = -\frac{d}{dt} \int_{v} \rho_{v} \, dv$$


$$\nabla \cdot \vec{J} = -\frac{d\rho_{v}}{dt}$$

Electrical Engineering, UPRM (please print on BOTH sides of paper)


```
5.13 In a slab of dieletric material for which \varepsilon
= 2.4\varepsilon_{o} \text{ and V} = 300z^{2} \text{ V, Find } \vec{E} = -\nabla V
(a) \vec{D} and \rho_{v} (b) \vec{P}
\vec{E} = -\left[\frac{\partial V}{\partial x}\hat{a}_{x} + \frac{\partial V}{\partial y}\hat{a}_{y} + \frac{\partial V}{\partial z}\hat{a}_{z}\right] = -600z\hat{a}_{z}
\vec{D} = \varepsilon = 2.4\varepsilon_{o}\vec{E} = 12.7z \, nC \, / \, m^{2} \, \hat{z}
\rho_{v} = \nabla \cdot \vec{D} = 12.7nC \, / \, m^{3}
\vec{P} = \varepsilon_{o}\chi_{e}\vec{E} = (1.4)\varepsilon_{o}(-600z)\hat{z} = 7.43z \, nC \, / \, m^{2} \, \hat{z}
```