Overview of radars

S. Cruz-Pol
INEL 6069

Types of Doppler Radar

- Continuous Wave (CW)
 - Simple
 - No range information
- Frequency Modulated CW, (FMCW)
 - Fine range resolution
 - Artifacts from target motion
- Pulse Doppler
 - Range and Doppler
 - No artifacts (except when pulse compression used)

FM Radar: Stationary target case

\[f_d = 0 \]

\[R = ct/2 \]

FM Radar: Moving target case

\[f_d \neq 0 \]

Frequency difference, \(\Delta f \), between transmitter and received echoes is reduced by target's doppler frequency, \(f_d \). To find transit time, \(t_d \) must be added to \(\Delta f \).
How to find f_d in Pulse Doppler Radar

Range Ambiguities

Range Resolution

$\Delta R = \frac{c\tau}{2}$

Unambiguous Range

$R_{\text{max}} = \frac{c}{2PRF} = \frac{cT_s}{2}$

Doppler Ambiguities

Nyquist frequency

$f_{d,\text{max}} = \frac{PRF}{2} = \frac{1}{2T_s}$

Nyquist Interval

(maximum radial velocity that can be measured)

$v_{\text{max}} = \frac{f_d\lambda}{2} = \frac{PRF\lambda}{4}$