

Common Transmission Lines <i>R', L', G'</i> , and <i>C'</i> depend on the particular transmission line structure and the material properties. <i>R, L, G</i> , and <i>C</i> can be calculated using fundamental EMAG techniques.				
Parameter	Two-Wire Line	Coaxial Line	Parallel-Plate Line	Unit
R'	$rac{1}{\pi a \sigma_{_{cond}} \delta}$	$\frac{1}{2\pi\sigma_{cond}}\delta\left(\frac{1}{a}+\frac{1}{b}\right)$		
L'	$\frac{\mu}{\pi}a\cosh\!\left(\frac{D}{2a}\right)$	$\frac{\mu}{2\pi} \ln\!\left(\frac{b}{a}\right)$	24	
G'	$\frac{\pi\sigma_{_{diel}}}{a\cosh(D/(2a))}$	$\frac{2\pi\sigma_{_{diel}}}{\ln(b/a)}$		
С'	$\frac{\pi\varepsilon}{a\cosh(D/(2a))}$	$\frac{2\pi\varepsilon}{\ln(b/a)}$	$\varepsilon \frac{w}{d}$	F/m

EXAMPLE
LOSSIESS Lines (
$$R=0=G$$
)
Have perfect conductors and a perfect dielectric
medium between them.
• Propagation:
 $\alpha = 0, \quad \gamma = j\beta, \quad \beta = \omega\sqrt{LC}$
• Wavelength & Velocity:
 $u = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} = f\lambda, \quad \lambda = \frac{2\pi}{\beta}$
• Impedance
 $Z_o = R_o = \sqrt{\frac{L}{C}} \qquad X_o = 0$

₽					
Summary					
	$\gamma = \alpha + j\beta$ Propagation Constant	Z _o Characteristic Impedance			
General (Lossy)	$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$	$Z_o = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$			
Lossless	$\gamma = 0 + j\omega\sqrt{LC}$	$Z_o = R_o = \sqrt{\frac{L}{C}}$			
Distortionless RC = GL	$\gamma = \sqrt{RG} + j\omega\sqrt{LC}$	$Z_o = R_o = \sqrt{\frac{L}{C}} = \sqrt{\frac{R}{G}}$			

₩ Power

• The average input power at a distance *l* from the load is given by

$$P_{ave} = \frac{1}{2} \operatorname{Re} \left[V(l) I^*(l) \right]$$

which can be reduced to

$$P_{ave} = \frac{\left|V_{o}^{+}\right|^{2}}{2Z_{o}} \left(1 - \left|\Gamma\right|^{2}\right)$$

 The first term is the incident power and the second is the reflected power. Maximum power is delivered to load if Γ=0

₩ ₩		
Three (3) common Cases of		
line-load combinations:		
• Shorted Line ($Z_L=0$)		
$Z_{in} = 0 + jZ_o \tan \beta l = jb \qquad \Gamma_L = -1, s = \infty$		
■ Open-circuited Line (<i>Z</i> _{<i>L</i>} =∞)		
$Z_{in} = -jZ_o \cot\beta l \qquad \Gamma_L = 1, s = \infty$		
• Matched Line ($Z_L = Z_o$)		
$Z_{in} = Z_o \qquad \Gamma_L = 0, s = 1$		

₽

Java applets

- <u>http://www.amanogawa.com/transmission.</u> <u>html</u>
- http://physics.usask.ca/~hirose/ep225/
- <u>http://www.educatorscorner.com/index.cgi</u> <u>?CONTENT_ID=2483</u>

₽					
Find SWR on the SC					
• Numerically $s = r$ on the +axis of Γ_r in the SC Proof:					
	$\Gamma = \frac{z_L - 1}{z_L + 1} = (\text{when } z = r) = \frac{r - 1}{r + 1}$				
	but then $\Gamma = \Gamma_r + j0 \equiv \frac{s-1}{s+1}$				

Java Applet : Smith Chart

₽

http://education.tm.agilent.com/index.cgi?CONTENT_ID=5

₽₽

The end of INEL 4151

Material extra for (INEL 4155)