
Some slides adapted from Sebesta’s textbook

Dr. Wilson Rivera

ICOM 4036: Programming Languages
Electrical and Computer Engineering Department

University of Puerto Rico

Lecture 2
Syntax Analysis

ICOM 4036: Programming Languages 2

Lecture Outline

• Introduction to syntax analysis
• Regular expressions
• Finite Automata
• Context free grammars
• Lexical Analysis
• Parsing

Introduction

ICOM 4036: Programming Languages 3

ICOM 4036: Programming Languages 4

Introduction

• Syntax: the form or structure of the expressions, statements,
and program units

• Semantics: the meaning of the expressions, statements, and
program units

• Syntax and semantics provide a language’s definition
– Syntactic specification of a programming language
– Construction of efficient parsers
– Error detection
– Extension language and new constructs

ICOM 4036: Programming Languages 5

Introduction

Lexical AnalysisScanner

Parser

Semantic Analyzer

Source Program

Parsing

Tokens

Parse Tree

Abstract Syntax Tree with
attributes

ICOM 4036: Programming Languages 6

Regular Expressions
Regular Expressions: A concise notation for regular sets
(1) Φ denotes the regular set Φ.
(2) Λ denotes the regular set {Λ}.
(3) α denotes the regular set {α}.
(4) If p and q are regular expressions denoting the regular sets P and Q
respectively, then

(a) (p | q) denotes P ∪ Q (Union)
(b) (pq) denotes P Q (Concatenation)
(c) (p)* denotes P* (Kleene Closure)

(5) Nothing else is a regular expression.

Notation:
p+ = p* p (non reflexive closure)

ICOM 4036: Programming Languages 7

Regular Expressions

RE Regular language Description

a|b {a,b}
(a|b)(a|b) {aa, ab, ba, bb}
a* {e, a, aa, aaa, …}
a*b {b,ab, aab, aaab, …}
(a|b)* {e, a, aa, aaa, …, b, bb, bbb…

ab, abb,…. aab, aabb, ….}

ICOM 4036: Programming Languages 8

Regular Expressions

• Regular Expression
(1O*1(0|1)*) | (01*0(0|1)*) 0

1

1
0

1

0,1

A

C

B

D

E

0

0,1

ICOM 4036: Programming Languages 9

Finite Automata

Deterministic Finite Automaton (DFA)

M = (Q, Σ, δ, q0 , F)
where
(1) Q is a finite non-empty set of states
(2) Σ is a finite set of input symbols
(3) q0 ∈Q (initial state)
(4) F ∈ Q (final states)
(5) δ is a partial mapping from Q x Σ to Q
(transition function: move function)

ICOM 4036: Programming Languages 10

Non-deterministic Finite Automaton (NFA)

• May have a choice of moves, i.e. δ is a mapping
from Q x Σ to 2Q

• Also allows ∈-transitions, i.e., δ (q,∈) ⊆ Q

ICOM 4036: Programming Languages 11

NFA Example

(a|b)*abb = { abb, aabb, babb, aaabb, bbabb,…}

0 0 1 2 3
0 0 0 0 0a a b b

b

0 1 2 3a b b

a

start

ICOM 4036: Programming Languages 12

DFA Example

0 1 2 3bba
b

a
a

a

b

DFA:

1. No state has an e-transition

2. For each state S and input symbol a, there is at most one
edge labeled a leaving S.

ICOM 4036: Programming Languages 13

Finite Automata Construction

• For every NFA M1 there is a DFA M2 for which
L(M2) = L(M1)

• Thompson’s Construction:
– Systematically generate an NFA for a given Regular

Expression.
• Subset construction algorithm:

– Converts an NFA to an equivalent DFA
– Key: identify sets of states of NFA that have similar

behavior, and make each set a single state of the DFA.

ICOM 4036: Programming Languages 14

From a Regular Expression to an NFA

Thomson’s Construction

1 i f
ε

N(ε)

2 i f
a

N(a), a∈Σ

3 N(s)

N(t)
i f

ε

N(s|t)

ε ε

ε

ICOM 4036: Programming Languages 15

From a Regular Expression to an NFA

4 N(st)i fN(s) N(t)

N(s*)N(s)i f
ε ε

ε

ε

5

6 Combine single NFAs for complex structures

ICOM 4036: Programming Languages 16

From a Regular Expression to an NFA

Example : (a|b)*abb

2 3
a

4 5
b

2 3
a

4 5
b

1 6

ε ε

ε
ε

ICOM 4036: Programming Languages 17

From a Regular Expression to an NFA

Example : (a|b)*abb

2 3
a

4 5
b

1 6

ε ε

ε
ε

0 7

ε

εε

ε

ICOM 4036: Programming Languages 18

From a Regular Expression to an NFA

Example : (a|b)*abb

2 3
a

4 5
b

1 6

ε ε

ε
ε

0 7

ε

εε

ε

8

9

10

a

b

b

ICOM 4036: Programming Languages 19

From an NFA to a DFA

Subset Construction

Operation Description

ε-closure(s)

ε-closure(T)

Move(T,a)

Set of NFA states reachable from an
NFA state s on e-transitions along

Set of NFA states reachable from some
NFA state s in T on e-transitions along

Set of NFA states reachable from some
NFA state set with a transition on input
symbol a

ICOM 4036: Programming Languages 20

From an NFA to a DFA

Subset Construction
Initially, e-closure (s0) is the only states in D and it is
unmarked

while there is an unmarked state T in D do
mark T;
for each input symbol a do

U:= e-closure(move(T,a));
if U is not in D then

add U as an unmarked state to D
Dtran[T,a]:=U;

end(for)
end(while)

ICOM 4036: Programming Languages 21

From an NFA to a DFA

Example
• e-closure(0)={0,1,2,4,7}=A

• e-closure(move(A,a))=
e-closure({3,8})={1,2,3,4,6,7,8}=B
Thus, Dtran[A,a]=B

• e-closure(move(A,b))=
e-closure({5})={1,2,4,5,6,7}=C
Thus, Dtran[A,b]=C

ICOM 4036: Programming Languages 22

From an NFA to a DFA

• e-closure(move(B,a))=
e-closure({3,8})=B
Thus, Dtran[B,a]=B

• e-closure(move(B,b))=
e-closure({5,9})={1,2,4,5,6,7,9}=D
Thus, Dtran[B,b]=D

ICOM 4036: Programming Languages 23

From an NFA to a DFA

• e-closure(move(C,a))=
e-closure({3,8})=B
Thus, Dtran[C,a]=B

• e-closure(move(C,b))=
e-closure({5})=C
Thus, Dtran[C,b]=C

ICOM 4036: Programming Languages 24

From an NFA to a DFA

• e-closure(move(D,a))=
e-closure({3,8})=B
Thus, Dtran[D,a]=B

• e-closure(move(D,b))=
e-closure({5,10})={1,2,4,5,6,7,10}=E
Thus, Dtran[D,b]=E

ICOM 4036: Programming Languages 25

From an NFA to a DFA

• e-closure(move(E,a))=
e-closure({3,8})=B
Thus, Dtran[E,a]=B

• e-closure(move(E,b))=
e-closure({5})=C
Thus, Dtran[E,b]=C

ICOM 4036: Programming Languages 26

From an NFA to a DFA

states a b
A B C
B B D
C B C
D B E
E B C A B

C

D E
a b b

ab b

b

a
a

a

ICOM 4036: Programming Languages 27

From a DFA to a minimal DFA

Hopcroft Algorithm

1. Construct an initial partition P of set of states with two groups:
The accepting states F and the nonaccepting states S-F

2. Apply the following procedure to P to construct a new partition
Pnew
for each group G of P do

divide G into subgroups such that two states
of G are in the same subgroup if and only if for all input symbol a,
states s and t have transitions on a to states in the same group of
P.

Replace G in Pnew by the set of all subgroup formed.
3. If Pnew =P let = Pfinal =P and go to 4. Otherwise repeat (2) with P=

Pnew.

4. Choose one state in each group of the partition Pfinal as the
representative for that group

5. Contruct the new transition table by replacing the states in a
group by the respresentative

ICOM 4036: Programming Languages 28

From a DFA to a minimal DFA

1. P={ (ABCD), (E)}
2. P_new={(ABC), (D), (E)} DàE
3. P_new={(AC), (B), (D), (E)} BàD
4. P_final={(AC), (B), (D), (E)}
5. We choose A as the representative for the

subgroup (AC)

ICOM 4036: Programming Languages 29

From an NFA to a DFA

states a b
A B A
B B D
D B E
E B A

A B D E
a b b

b

a
a

a

b

ICOM 4036: Programming Languages 30

RE to NFA: Example

• Desing a NFA for the following regular
expression

(a|b)*a(a|b)

1

3

54

60

2e
a

b

7

e

e

e

ee

e

e

a
8

10

1211

13

9e
a

e

e

e
b

ICOM 4036: Programming Languages 31

NFA to DFA: Example

• E(0)={0 1 2 4 7}=A

• E(move A a) =E(3 8)= {1 2 3 4 6 7 8 9 11}=B

• E(move A b)=E(5)={1 2 4 5 6 7}=C

• E(move B a)=E(3 8 10)={1 2 3 4 6 7 8 9 10 13} =D
•

E(move B b)=E(5 12)={1 2 4 5 6 7 12 13}=E
•

E(move C a)=E (3 8) = B

• E(move C b)= E (5) =C

E(move D a)= E(3 8 10) =D

• E(move D b)= E(5)= C

• E(mov E a)=E(3 8)=B

• E(mov E b)=E(5)=C

•Reduce the NFA to a DFA

NFA to DFA

ICOM 4036: Programming Languages 32

ICOM 4036: Programming Languages 33

Regular Expressions (summary)

• REs are commonly used to define search patterns and the
lexical structure of programming Languages

• REs are a convenient mechanism for describing languages
but they do not give a method for recognizing tokens
– Construct a NFA for the regular expression.
– Convert the NFA to an equivalent DFA.
– Minimize the number of states in the DFA

More on Regular Expressions

• {anbn : n>0} is not regular since the number
of a’s controls the number of b’s
– This type of operation is not allowed according

to the definition of regular expressions

• Many real world REs engines implement features
that cannot be described by REs theory
– The Python regular expression r"(a*)b\1" recognizes anban

• \1 matches the same string matched by the parenthesized sub-
expression.

ICOM 4036: Programming Languages 34

Chomsky Hierarchy

Type-0 unrestricted Turing
machine
(TM)

Type-1 Context
sensitive

Linear
bounded TM

Type-2 Context
free

Non
deterministic
pushdown
automaton

Type-3 Regular Finite State
Automaton

ICOM 4036: Programming Languages 35

Unrestricted

Context Sensitive

Context Free

Regular

ICOM 4036: Programming Languages 36

Chomsky Hierarchy

Regular Grammars

Regular Expressions

Finite State Automata

Context-free Grammars

Pushdown Automata

For Regular Grammars there is always a corresponding deterministic automaton. For
Context-free grammars there is none unless the grammar is unambiguous.

ICOM 4036: Programming Languages 37

Context-free Grammar

A formal grammar is define as
G=(T,N,S,P)

1) Tokens (terminals)
2) Constructs (nonterminals)
3) Starting nonterminal (main construct)
4) Productions (rules that define nonterminal in terms of sequences

of terminals and nonterminals)

A context-free grammar (CFG) is a formal grammar in which every
production rule is of the form V → w where

• V is a single nonterminal symbol
• w is a string of terminals and/or non-terminals (w can be empty).

The language of a grammar G=(T;N;R; S) usually denoted by L(G), is
defined as L(G)={s | S-> * s, s in T*}

ICOM 4036: Programming Languages 38

BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Meant to describe the syntax of natural languages
– Context free means replacing non-terminals in any order

(i.e., regardless of context) produces same result (as long
as you use same productions).

– If we use the full power of the context-free languages we
get compilers which in general are inefficient, and
probably not so good in handling erroneous input

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58
– BNF is equivalent to context-free grammars

ICOM 4036: Programming Languages 39

BNF Fundamentals

•A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand
side (RHS), which is a string of terminals and/or nonterminals

•Terminals are lexemes

•Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
<ident_list> → identifier | identifier, <ident_list>
<if_stmt> → if <logic_expr> then <stmt>

•Grammar: a finite non-empty set of rules

•A start symbol is a special element of the nonterminals of a grammar

ICOM 4036: Programming Languages 40

BNF Rules

• An abstraction (or nonterminal symbol)
can have more than one RHS

<stmt> → <single_stmt>

| begin <stmt_list> end

ICOM 4036: Programming Languages 41

Describing Lists

• Syntactic lists are described using
recursion
<ident_list> → ident

| ident, <ident_list>

• A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

ICOM 4036: Programming Languages 42

Example: Grammar sentences

• Consider the following grammar
<s> à <A> a b
<A> à <A>b | b
 à a | a

Which of the following sentences are in the language
generated by this grammar?

1. baab
2. bbbab
3. bbaaaa
4. bbaab

Example: Regular Grammar

• Regular Grammar
<S>à a<S>
<S>àb<A>
<A>àe | c<A>

• Regular expression
a*bc*

ICOM 4036: Programming Languages 43

Non Regular Grammar

• Context free grammar
<S>à a<S>b | ab

• {anbn : n>0} is not regular since the number
of a’s controls the number of b’s
– This type of operation is not allowed according

to the definition of regular expressions

ICOM 4036: Programming Languages 44

Context free grammars

• If we remove the regular-grammar restrictions, we
get a class of grammars known as the Type 2 or
context-free grammars. Such grammars can
“count” arbitrarily high, at least under the right
circumstances.
– For example, here is a language of correctly nested

parentheses
• S à S ’(’ S ’)’ | e
• It recognizes the empty string, ‘()’, ‘()()’, ‘(())’, ‘(()(()))’

ICOM 4036: Programming Languages 45

ICOM 4036: Programming Languages 46

Example: Grammar Derivations

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d
<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const

ICOM 4036: Programming Languages 47

Example: Grammar Derivation

<program> => <stmts> => <stmt>
=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=> a = b + <term>
=> a = b + const

ICOM 4036: Programming Languages 48

Derivations

• Every string of symbols in a derivation is a
sentential form

• A sentence is a sentential form that has
only terminal symbols

• A leftmost derivation always choose
leftmost non-terminals to be expanded.

ICOM 4036: Programming Languages 49

Parse Tree

• A hierarchical representation of a derivation
<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

ICOM 4036: Programming Languages 50

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two or
more distinct parse trees

• Checking a grammar is ambiguous is
undecidable
– Reduction from Post Correspondence problem

• Ambiguous grammars lead to ambiguous
semantics!

ICOM 4036: Programming Languages 51

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → * | +

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const+ +* *

<op>

ICOM 4036: Programming Languages 52

An Unambiguous Expression Grammar

• If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> → <expr> + <term> | <term>
<term> → <term> * const| const

<expr>

<expr> <term>

<term> <term>

const const

const*

+

ICOM 4036: Programming Languages 53

Associativity of Operators

• Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

ICOM 4036: Programming Languages 54

Extended BNF

• Optional parts are placed in brackets []
<proc_call> -> ident [(<expr_list>)]

• Alternative parts of RHSs are placed
inside parentheses and separated via
vertical bars
<term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside
braces { }
<ident> → letter {letter|digit}

ICOM 4036: Programming Languages 55

BNF and EBNF

• BNF
<expr> → <expr> + <term>

| <expr> - <term>
| <term>

<term> → <term> * <factor>
| <term> / <factor>
| <factor>

• EBNF
<expr> → {<expr>(+ | -)} <term>
<term> → {<term>(* | /)}<factor>

ICOM 4036: Programming Languages 56

Example: Grammar Definition

Function: type IDENTIFIER LEFT_PARENT optional_arguments RIGHT_PAREN
LEFT_PAREN LEFT_CURLY statements RIGHT_CURLY

Type: TYPE_KEYWORD | user_defined_type

Optional-arguments: null | argument | argument COMMA arguments

Statements: statement | statement statements

Statement: declaration | equals_expr | …..

Declaration: type IDENTIFIER optional_declarations SEMICOLON

equals_expr: IDENTIFIER EQUAL_SIGN expression

Expression: plus_expr | equals_expr | …

plus_expression: expression PLUS_SIGN expression

ICOM 4036: Programming Languages 57

Example: Java language specification

PrimitiveType:
NumericType
boolean

NumericType:
IntegralType

FloatingPointType

IntegralType: one of
byte short int long char

FloatingPointType: one of
float double

ICOM 4036: Programming Languages 58

Syntax Analysis

• The syntax analysis portion of a language
processor nearly always consists of two
parts:
– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a
regular grammar)

– A high-level part called a parser
(mathematically, a push-down automaton based
on a context-free grammar)

Lexical Analysis

• Breaks the text down into the smallest
useful atomic units, known as tokens
– while throwing away (or at least, putting to one

side) information, such as white space and
comments

• Groups characters into tokens to facilitate
the parsing process
– X+Y *
– X+Y++

ICOM 4036: Programming Languages 59

ICOM 4036: Programming Languages 60

Lexical Analysis

• Approaches to building a lexical analyzer:

– Write a formal description of the tokens and use
a software tool that constructs table-driven
lexical analyzers given such a description

– Design a state diagram that describes the
tokens and write a program that implements the
state diagram

ICOM 4036: Programming Languages 61

Example: Lexical Analysis

int main ()
{

float foo, bar, baz;
foo = bar + baz;

}

Lexeme Token Category
‘int’ TYPE_KEYWORD
‘main’ IDENTIFIER
‘(‘ LEFT_PAREN
‘)’ RIGHT_PAREN
‘{‘ LEFT_CURLY
‘float’ TYPE_KEYWORD
‘foo’ IDENTIFIER
‘,’ COMMA
‘bar’ IDENTIFIER
‘,’ COMMA
‘baz’ IDENTIFIER
‘;’ SEMICOLON
‘foo’ IDENTIFIER
‘=‘ OPERATOR
‘bar’ IDENTIFIER
‘+’ OPERATOR
‘baz’ IDENTIFIER
‘;’ SEMICOLON
‘}’ RIGHT_CURLY

ICOM 4036: Programming Languages 62

Example: Lexical Analysis

Lexeme Token CFG Definition
‘int’ TYPE_KEYWORD type
‘main’ IDENTIFIER IDENTIFIER
‘(‘ LEFT_PAREN LEFT_PAREN
Nothing nothing optional_arguements
‘)’ RIGHT_PAREN RIGH_PAREN
‘{‘ LEFT_CURLY LEFT_CURLY
‘float’ TYPE_KEYWORD Statements
‘foo’ IDENTIFIER
‘,’ COMMA
‘bar’ IDENTIFIER
‘,’ COMMA
‘baz’ IDENTIFIER
‘;’ SEMICOLON
‘foo’ IDENTIFIER
‘=‘ OPERATOR
‘bar’ IDENTIFIER
‘+’ OPERATOR
‘baz’ IDENTIFIER
‘;’ SEMICOLON
‘}’ RIGHT_CURLY RIGHT_CURLY

ICOM 4036: Programming Languages 63

Example: Lexical Analysis

If (i== j)
z = 0; /* comment */

else
z= 1;

\tif(i== j)\n
\t\tz = 0; /* comment*/\n
\telse\n
\t\tz= 1;

IF, LPAR, ID("i"),
EQUALS, ID("j"), RPAR,
ID("z"),
ASSIGN,INTLIT("0"),
SEMI, ELSE, ID("z"),
ASSIGN, INTLIT("1"),
SEMI

ICOM 4036: Programming Languages 64

State Diagram

ICOM 4036: Programming Languages 65

Implementing the State Diagram

int CharClass;
char lexeme [100];
char nextChar;
int lexLen;
int LETTER=0;
int DIGIT=1;
int UNKNOWN=-1;

/*addChar – a function to add nextChar to lexeme */

void addChar(){
if (lexLen <=99)

lexeme[lexLen++]=nextChar;
else printf(“Error: Lexeme is too long \n”);

}

/* getNonBlank – call getChar until it returns a non-whitespace character */

void getNonBlank(){
while(isspace(nextChar))

getChar();
}

ICOM 4036: Programming Languages 66

Implementing the State Diagram

/*getChar – a function to get the next character of input and determine its
character class*/

void getChar(){
if(isalpha(nextChar))

charClass = LETTER;
else if (isdigit(nextChar))

charClass = DIGIT;
else

charClass = UNKNOWN
}

/*lex – a simple lexical analyzer*/

int lex(){
lexlen =0;
static int first=1;

if (first){
getChar();
first=0;

}

getNonBlank();

switch (CharClass){

ICOM 4036: Programming Languages 67

Implementing the State Diagram

switch (charClass){

case LETTER:
addChar();
getChar();
while (charClass == LETTER || charClass == DIGIT){

addChar();
getChar();

}
return lookup(lexeme);
break;

case DIGIT:
addChar();
getChar();
while (charClass == DIGIT){

addChar();
getChar();

}
return INT_LIT;
break;

} /*End of switch*/

} /*End of lex*/

ICOM 4036: Programming Languages 68

State Diagram

• Problem: Design a state diagram to
recognize one form of the comments of C-
based programming languages, those that
begin with /* and end with */

/ * *
other

/

other

ICOM 4036: Programming Languages 69

Example: state diagram

For-Keyword = for
Identifier = [a-z][a-z0-9]*

Lexical Analyzer with Lex

• Lex is a domain-specific programming language for creating programs to
process streams of input characters.

• A Lex program has the following form:
declarations
%%
translation rules
%%
auxiliary functions

• The declarations section can contain declarations of variables, manifest
constants, and regular definitions. The declarations section can be empty.

• The translation rules are each of the form pattern {action}
– Each pattern is a regular expression which may use regular definitions

defined in the declarations section.
– Each action is a fragment of C-code. The braces around the action may

be omitted if the action is a single statement.

ICOM 4036: Programming Languages 70

Lexical Analyzer with Lex

a\+b matches the string a+b.
. matches any character except a newline.
^ matches the empty string at the beginning of a line.
$ matches the empty string at the end of a line.
[a-z] matches any lowercase letter between a and z.
[A-Za-z0-9] matches any alphanumeric character.
[^abc] matches any character except an a, or a b, or a c.
[^0-9] matches any nonnumeric character.
a* matches a string of zero or more a's.
a+ matches a string of one or more a's.
.a? matches a string of zero or one a's.
a{2,5} matches any string consisting of two to five a's.
a/b matches an a when followed by a b.
\n matches a newline.
\t matches a tab

ICOM 4036: Programming Languages 71

Example with Lex

int num_words = 0,num_numbers = 0, num_lines = 0;
word [A-Za-z]+
number [0-9]+
%%
{word} {++num_words;}
{number} {++num_numbers;}
\n {++num_lines; }
. { }
%%
int main() {

yylex();
printf("# of words = %d, # of numbers = %d, # of lines = %d\n",

num_words, num_numbers, num_lines);
}

ICOM 4036: Programming Languages 72

Example with Lex

• Put lex program into a file file.l
• Compile the lex program with the

command
– lex file.l

• This command produces an output file lex.yy.c.
• Compile this output file with the C

compiler and the lex library -ll
– gcc lex.yy.c -ll

• The resulting a.out is the lexical processor.

ICOM 4036: Programming Languages 73

ICOM 4036: Programming Languages 74

The Parsing Problem

• Given an input program:

– Operates on tokens and groups them into useful
grammatical structures.

– Find all syntax errors; for each, produce an
appropriate diagnostic message and recover
quickly

– Produce the parse tree, or at least a trace of the
parse tree, for the program

ICOM 4036: Programming Languages 75

The Parsing Problem (cont.)

• Two categories of parsers
– Top down - produce the parse tree, beginning

at the root
• Order is that of a leftmost derivation
• Traces or builds the parse tree in preorder

– Bottom up - produce the parse tree, beginning
at the leaves
• Order is that of the reverse of a rightmost derivation

ICOM 4036: Programming Languages 76

The Parsing Problem (cont.)

• Top-down Parsers
– Given a sentential form, xAα , the parser must

choose the correct A-rule to get the next
sentential form in the leftmost derivation, using
only the first token produced by A

• The most common top-down parsing
algorithms:
– Recursive descent - a coded implementation
– LL parsers - table driven implementation

ICOM 4036: Programming Languages 77

The Parsing Problem (cont.)

• Bottom-up parsers
– Given a right sentential form, α, determine what

substring of α is the right-hand side of the rule
in the grammar that must be reduced to
produce the previous sentential form in the
right derivation

– The most common bottom-up parsing
algorithms are in the LR (Left-to-right,
Rightmost derivation) type.

ICOM 4036: Programming Languages 78

Recursive-Descent Parsing

• There is a subprogram for each
nonterminal in the grammar, which can
parse sentences that can be generated by
that nonterminal

• EBNF is ideally suited for being the basis for
a recursive-descent parser, because EBNF
minimizes the number of nonterminals

ICOM 4036: Programming Languages 79

Recursive-Descent Parsing (cont.)

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <expr>}
<term> → <factor> {(* | /) <term>}
<factor> → id | int_constant | (<expr>)

ICOM 4036: Programming Languages 80

Recursive-Descent Parsing (cont.)

• Assume we have a lexical analyzer named
lex, which puts the next token code in
nextToken

• The coding process when there is only one
RHS (Right Hand Side):
– For each terminal symbol in the RHS, compare it

with the next input token; if they match,
continue, else there is an error

– For each nonterminal symbol in the RHS, call its
associated parsing subprogram

ICOM 4036: Programming Languages 81

Recursive-Descent Parsing (cont.)

/* Function expr
Parses strings in the language
generated by the rule:
<expr> → <term> {(+ | -) <term>}

*/

void expr() {

/* Parse the first term */

term();
/* As long as the next token is + or -, call

lex to get the next token and parse the
next term */

while (nextToken == ADD_OP ||
nextToken == SUB_OP){

lex();
term();

}
}

ICOM 4036: Programming Languages 82

Recursive-Descent Parsing (cont.)

• A nonterminal that has more than one RHS
requires an initial process to determine
which RHS it is to parse
– The correct RHS is chosen on the basis of the

next token of input (the lookahead)
– The next token is compared with the first token

that can be generated by each RHS until a match
is found

– If no match is found, it is a syntax error

ICOM 4036: Programming Languages 83

Recursive-Descent Parsing (cont.)

/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>)
*/

void term() {
printf("Enter <term>\n");

/* Parse the first factor */

factor();
/* As long as the next token is * or /,

next token and parse the next factor */
while (nextToken == MULT_OP || nextToken == DIV_OP) {

lex();
factor();

}

printf("Exit <term>\n");
} /* End of function term */

ICOM 4036: Programming Languages 84

Recursive-Descent Parsing (cont.)

/* Function factor
Parses strings in the language
generated by the rule:
<factor> -> id | (<expr>) */

void factor() {

/* Determine which RHS */
if (nextToken) == ID_CODE || nextToken == INT_CODE)

/* For the RHS id, just call lex */
lex();

/* If the RHS is (<expr>) – call lex to pass over the left parenthesis,
call expr, and check for the right parenthesis */
else if (nextToken == LP_CODE) {
lex();

expr();
if (nextToken == RP_CODE)

lex();
else
error();

} /* End of else if (nextToken == ... */

else error(); /* Neither RHS matches */
}

ICOM 4036: Programming Languages 85

Recursive-Descent Parsing (cont.)

Trace of the recursive descent parser for the string a + b * c

Call lex /* returns a */
Enter <expr>
Enter <term>

Enter <factor>
Call lex /* returns + */
Exit <factor>
Exit <term>

Call lex /* returns b */
Enter <term>
Enter <factor>

Call lex /* returns * */
Exit <factor>
Call lex /* returns c */
Enter <factor>

Call lex /* returns end-of-input */
Exit <factor>
Exit <term>
Exit <expr>

ICOM 4036: Programming Languages 86

Bottom-up Parsing

• The Bottom-up Parsing problem is finding
the correct RHS in a right-sentential form
to reduce to get the previous right-
sentential form in the derivation

• LR Parsers
– Canonical LR (Knuth, 1965): original LR

algorithm

ICOM 4036: Programming Languages 87

Bottom-up Parsing (cont.)

• Advantages of LR parsers:
– They will work for nearly all grammars that

describe programming languages.
– They work on a larger class of grammars than

other bottom-up algorithms, but are as efficient
as any other bottom-up parser.

– The LR class of grammars is a superset of the
class parsable by LL parsers.

ICOM 4036: Programming Languages 88

Structure of An LR Parser

• An LR configuration stores the state of an LR parser

(S0X1S1X2S2…XmSm, aiai+1…an$)

A Pushdown automata is a
deterministic finite state automaton
with the addition of a stack for a
memory indicating which states the
parser has passed through

ICOM 4036: Programming Languages 89

Bottom-up Parsing (cont.)

• LR parsers are table driven, where the
table has two components, an ACTION
table and a GOTO table
– The ACTION table specifies the action of the

parser, given the parser state and the next
token
• Rows are state names; columns are terminals

– The GOTO table specifies which state to put
on top of the parse stack after a reduction
action is done
• Rows are state names; columns are nonterminals

ICOM 4036: Programming Languages 90

Bottom-up Parsing (cont.)

• Initial configuration: (S0, a1…an$)
• Parser actions:

– If ACTION[Sm, ai] = Shift S, the next
configuration is:
(S0X1S1X2S2…XmSmaiS, ai+1…an$)

– If ACTION[Sm, ai] = Reduce A → β and S =
GOTO[Sm-r, A], where r = the length of β, the
next configuration is
(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)

ICOM 4036: Programming Languages 91

Bottom-up Parsing (cont.)

• Parser actions (continued):
– If ACTION[Sm, ai] = Accept, the parse is

complete and no errors were found.
– If ACTION[Sm, ai] = Error, the parser calls an

error-handling routine.

ICOM 4036: Programming Languages 92

LR Parsing Table

1. EàE+T
2. EàT
3. TàT*F
4. TàF
5. Fà(E)
6. Fà id

S4

ICOM 4036: Programming Languages 93

Trace of a parse

Stack Input Action
0 id * (id + id) $ Shift 5
0id5 * (id + id) $ Reduce 6 (Use GOTO[0, F])
0F3 * (id + id) $ Reduce 4 (Use GOTO[0, T])
0T2 * (id + id) $ Shift 7
0T2*7 (id + id) $ Shift 4
0T2*7(4 id + id) $ Shift 5
0T2*7(4id5 + id) $ Reduce 6 (Use GOTO[4, F])
0T2*7(4F3 + id) $ Reduce 4 (Use GOTO[4, T])
0T2*7(4T2 + id) $ Reduce 2 (Use GOTO[4, E])
0T2*7(4E8 + id) $ Shift 6
0T2*7(4E8+6 id) $ Shift 5
0T2*7(4E8+6id5)$ Reduce 6 (Use GOTO[6, F])
0T2*7(4E8+6F3)$ Reduce 4 (Use GOTO[6, T])
0T2*7(4E8+6T9)$ Reduce 1 (Use GOTO[4, E])
0T2*7(4E8) $ Shift 11
0T2*7(4E8)11 $ Reduce 5 (Use GOTO[7, F])
0T2*7F10 $ Reduce 3 (Use GOTO[0, T])
0T2 $ Reduce 2 (Use GOTO[0, E])
0E1 $ ACCEPT

Parsers Classification

• LL(k) Top down parser
– LL(1) are simple parsers but cannot recognize all

context free grammars
• LR(k) Bottom up parser

– LR(1) are more powerful
– LALR(1)

• Not as powerful as full LR(1) but simpler to
implement

• Yacc uses LALR(1) parse tables to construct a
restricted LR

ICOM 4036: Programming Languages 94

ICOM 4036: Programming Languages 95

Recommended Links

• Parsing Simulator
• Compiler component generators

– lexical analyzer generators: lex, flex
– syntax analyzer generator: yacc, bison
– PLY (Python Lex-Yacc)
– ANTLR lexer-parser generator
– Compact Guide to Lex & Yacc
– Flex
– GNU Bison
– JavaCC

ICOM 4036: Programming Languages 96

Summary

• BNF and context-free grammars are equivalent meta-
languages to describe syntax

• Regular expressions and Finite Automata
• Syntax analysis

– Lexical Analysis (Produce tokens)
– Parsing (Produces a parse tree)

• Lexical Analyzer
• Parsing

– Top-down approach
• Recursive-descent parser

– Bottom-up approach
• The LR family of shift-reduce parsers is the most

common bottom-up parsing approach

