Lecture 2
Syntax Analysis

Dr. Wilson Rivera
ICOM 4036: Programming Languages

Electrical and Computer Engineering Department
University of Puerto Rico

Some slides adapted from Sebesta’s textbook

Lecture Outline

Introduction to syntax analysis
Regular expressions

Finite Automata

Context free grammars

Lexical Analysis

Parsing

ICOM 4036: Programming Languages

Introduction

position = initial + rate * 60

A

Lexical Analyzer

(id, 1) (=) (id,2) (+) (id,3) (*) (60)

|

Syntax Analyzer

- ?

id, 2
()/od 3 >

Semantlc Analyzer

'

(id, 1)/ T~ +
(id, 2

(id, 1)

(id, 3)/ inttofioa
|
Y 60

ICOM 4036: Programming Languages

Y oV

Intermediate Code Generator

tl = inttofloat(60)
t2 = id3 * ti
t3 = id2 + t2
idl = t3
1

Code Optimizer

tl = id3 * 60.0
idl = id2 + t1

{

Code Generator

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF idi, R1

Introduction

Syntax: the form or structure of the expressions, statements,
and program units

Semantics: the meaning of the expressions, statements, and
program units

Syntax and semantics provide a language’s definition
- Syntactic specification of a programming language
- Construction of efficient parsers
- Error detection
- Extension language and new constructs

ICOM 4036: Programming Languages 4

Introduction

Scanner

Parser

Source Program

Lexical Analysis

Parsing

Semantic Analyzer

Abstract Syntax Tree with
attributes

ICOM 4036: Programming Languages

Tokens

Parse Tree

Reqgular Expressions

Regular Expressions: A concise notation for regular sets
(1) ®@ denotes the regular set P.

(2) A denotes the regular set {A}.

(3) a denotes the regular set {a}.

(4) If p and q are regular expressions denoting the regular sets P and Q
respectively, then

(a) (plq) denotes P U Q (Union)
(b) (pq) denotes P Q (Concatenation)
(¢) (p)* denotes P* (Kleene Closure)

(5) Nothing else is a regular expression.

Notation:
p+=p* p (non reflexive closure)

ICOM 4036: Programming Languages

Reqgular Expressions

RE Regular language Description
alb {a,b}

(alb)(alb) {aa, ab, ba, bb}

a* {e, a, aa, aaa, ...}

a*b {b,ab, aab, aaab, ...}

(a|b)* {e, a, aa, aaa, ..., b, bb, bbb...

ab, abb,.... aab, aabb,}

ICOM 4036: Programming Languages

Regular Expressions

- Regular Expression
(10*1(0[1)*) | (01*0(0[1)%)

ICOM 4036: Programming Languages 8

Finite Automata

Deterministic Finite Automaton (DFA)

M=(Q,Z,0,q,F)
where
(1) Q 1s a finite non-empty set of states
(2) 2 1s a finite set of input symbols
(3) qo €Q (initial state)
(4) F € Q (final states)
(5) 0 is a partial mapping from Q x Z to Q
(transition function: move function)

ICOM 4036: Programming Languages

Non-deterministic Finite Automaton (NFA)

e May have a choice of moves, 1.e. 0 is a mapping
from Q x = to 29

e Also allows €&-transitions,i.e.,0 (q,€)C Q

ICOM 4036: Programming Languages

10

NFA Example

(alb)*abb = { abb, aabb, babb, aaabb, bbabb,...}

a
start 0‘ | c i = ’ @

ICOM 4036: Programming Languages

11

DFA Example

DFA:
1. No state has an e-transition

2. For each state S and input symbol a, there is at most one
edge labeled a leaving S.

ICOM 4036: Programming Languages 12

Finite Automata Construction

 For every NFA M, there 1s a DFA M, for which
L(M;) = L(M;)
o Thompson’s Construction:

— Systematically generate an NFA for a given Regular
Expression.

e Subset construction algorithm:

— Converts an NFA to an equivalent DFA

— Key: identify sets of states of NFA that have similar
behavior, and make each set a single state of the DFA.

ICOM 4036: Programming Languages

13

From a Regular Expression to an NFA

Thomson’s Construction

! @ © N(e)
d
2 @ ’@ N(a), a&X

g (D g
ICOM 4036: Programming La@./v

14

From a Reqgular Expression to an NFA

€ '/g\ €
C RO HD e
€

6 Combine single NFAs for complex structures

ICOM 4036: Programming Languages 15

From a Regular Expression to an NFA

Example : (alb)*abb

a b
4

=@ >@ 4.0 >@

— e

e

ICOM 4036: Programming Languages

b

16

From a Regular Expression to an NFA

Example : (alb)*abb

€
d
€
0> (1) 6
€
o6,

ICOM 4036: Programming Languages

17

From a Reqgular Expression to an NFA

Example : (alb)*abb

ICOM 4036: Programming Languages

18

From an NFA

to a DFA

Subset Construction

Operation

e—closure(s)

e—closure(T)

Move(T,a)

ICOM 4036: Programming Languages

Description

Set of NFA states reachable from an
NFA state s on e-transitions along

Set of NFA states reachable from some
NFA state s in T on e-transitions along

Set of NFA states reachable from some
NFA state set with a transition on input
symbol a

19

From an NFA to a DFA

Subset Construction
Initially, e-closure (s,) is the only states in D and it is
unmarked
while there is an unmarked state T in D do
mark T;
for each input symbol a do
U:= e-closure(move(T,a)),
if Uis not in D then
add U as an unmarked state to D
Dtran[T,a]:=U;
end(for)
end(while)

ICOM 4036: Programming Languages

20

From an NFA to a DFA

Example
e-closure(0)={0,1,2,4,7}=A

e-closure(move(A,a))=
e-closure({3,8)={1,2,3,4,6,7,8}=B
Thus, Dtran[A,a]=B

e-closure(move(A,b))=

e-closure({5})={1,2,4,5,6,7}=C
Thus, Dtran[A,b]=C

ICOM 4036: Programming Languages

21

From an NFA to a DFA

e-closure(move(B,a))=
e-closure({3,8})=B
Thus, Dtran[B,a]=B

e-closure(move(B,b))=

e-closure({5,9)={1,2,4,5,6,7,9}=D
Thus, Dtran[B,b]=D

ICOM 4036: Programming Languages

22

From an NFA to a DFA

e-closure(move(C,a))=
e-closure({3,8})=B
Thus, Dtran[C,a]=B

e-closure(move(C,b))=

e-closure({5})=C
Thus, Dtran[C,b]=C

ICOM 4036: Programming Languages

23

From an NFA to a DFA

e-closure(move(D,a))=
e-closure({3,8})=B
Thus, Dtran[D,a]=B

e-closure(move(D,b))=

e-closure({5,10})={1,2,4,5,6,7,10}=E
Thus, Dtran[D,b]=E

ICOM 4036: Programming Languages

24

From an NFA to a DFA

e-closure(move(E,a))=
e-closure({3,8})=B
Thus, Dtran[E,a]=B

e-closure(move(E,b))=

e-closure({5})=C
Thus, Dtran[E,b]=C

ICOM 4036: Programming Languages

25

From an NFA to a DFA

states a b
A |B|C
B B |D
C B |C
D |B|E
E B |C

ICOM 4036: Programming Languages

26

From a DFA to a minimal DFA

Hopcroft Algorithm

1. Construct an initial partition P of set of states with two groups:
The accepting states F and the nonaccepting states S-F

2. Apply the following procedure to P to construct a new partition
new
for each group G of P do
divide G into subgroups such that two states

of G are in the same subgroup if and only if for all input symbol a,
states s and t have transitions on a to states in the same group of
P

Réplace G in P,y by the set of all subgroup formed.
3. If Phew =P let = Psna) =P and go to 4. Otherwise repeat (2) with P=

new.

4. Choose one state in each group of the partition Psna as the
representative for that group

5. Contruct the new transition table by replacing the states in a
group by the respresentative

ICOM 4036: Programming Languages 27

From a DFA to a minimal DFA

1. P={ (ABCD), (E)}

2. P_new={(ABC), (D), (E)} D->E
3. P_new={(AC), (B), (D), (E)} B—->D
4
5

. P_final={(AC), (B), (D), (E)}

. We choose A as the representative for the
subgroup (AC)

ICOM 4036: Programming Languages

From an NFA to a DFA

states a b
A B |A
B B|D
D B |E
E B |A

b b
b b
e N
' d
d

a

ICOM 4036: Programming Languages

29

RE to NFA: Example

- Desing a NFA for the following regular

expression
(alb)*a(alb)
e
e 2 — 3 &] e 9 — 10 &
0 —25 1 6 €57 — 38 13
o NS 4 — 5 5 oS 1 — 12 5

ICOM 4036: Programming Languages 30

NFA to DFA: Example

eReduce the NFA to a DFA

E(0)={01247}=A

E(move Aa)=E(38)={1234678911}=B
E(move A b)=E(5)={12456 7}=C

E(move Ba)=E(3810)={123467891013}=D
E(move Bb)=E(512)={1245671213}=E
E(move Ca)=E(38)=8B

E(move C b)=E (5) =C
E(move Da)=E(38 10) =D

E(move D b)= E(5)=C
E(mov E a)=E(3 8)=B

E(mov E b)=E(5)=C

ICOM 4036: Programming Languages

31

NFA to DFA

ICOM 4036: Programming Languages 32

Regular Expressions (summary)

REs are commonly used to define search patterns and the
lexical structure of programming Languages

REs are a convenient mechanism for describing languages
but they do not give a method for recognizing tokens

- Construct a NFA for the regular expression.
- Convert the NFA to an equivalent DFA.
- Minimize the number of states in the DFA

ICOM 4036: Programming Languages 33

More on Reqgular Expressions

- {a"b" : n>0} is not regular since the number
of a’s controls the number of b’s

- This type of operation is not allowed according
to the definition of regular expressions

- Many real world REs engines implement features
that cannot be described by REs theory

- The Python regular expression r'(a*)b\1" recognizes a"ba"

- \1 matches the same string matched by the parenthesized sub-
expression.

ICOM 4036: Programming Languages 34

Chomsky Hierarchy

Type-0 unrestricted Turing .
machine Unrestricted
(TM)
Type-1 Context Linear .
sensitive bounded TM Context Sensitive
Type-2 Context Non
free deterministic
pushdown Context Free
automaton
Type-3 Regular Finite State Regular
Automaton

ICOM 4036: Programming Languages 35

Chomsky Hierarchy

Context-free Grammars

Regular Grammars \

\
\

(Regular Expressions>.

.\.
~

‘ “.Pushdown A@

\

E@tate Automata >

For Regular Grammars there is always a corresponding deterministic automaton. For
Context-free grammars there is none unless the grammar is unambiguous.

ICOM 4036: Programming Languages

36

Context-free Grammar

A formal grammar is define as

1)
2)
3)
4)

G=(T,N,S,P)

Tokens (terminals)

Constructs (nonterminals)

Starting nonterminal (main construct)

Productions (rules that define nonterminal in terms of sequences

of terminals and nonterminals)

A context-free grammar (CFG) is a formal grammar in which every

production rule is of the form V — w where
V is a single nonterminal symbol
w is a string of terminals and/or non-terminals (w can be empty).

The language of a grammar G=(T;N;R; S) usually denoted by L(G), is

ICOM 4036: Programming Languages

defined as L(G)={s | S-> * s, s in T*}

37

BNF and Context-Free Grammars

Context-Free Grammars
- Developed by Noam Chomsky in the mid-1950s
- Meant to describe the syntax of natural languages

- Context free means replacing non-terminals in any order
(i.e., regardless of context) produces same result (as long
as you use same productions).

- If we use the full power of the context-free languages we
get compilers which in general are inefficient, and
probably not so good in handling erroneous input

- Backus-Naur Form (1959)
- Invented by John Backus to describe Algol 58
- BNF is equivalent to context-free grammars

ICOM 4036: Programming Languages 38

BNF Fundamentals

A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand
side (RHS), which is a string of terminals and/or nonterminals

- Terminals are lexemes

-Nonterminals are often enclosed in angle brackets

- Examples of BNF rules:
<ident 1list> - identifier | i1dentifier, <ident list>
<if stmt> - if <logic expr> then <stmt>

-Grammar: a finite non-empty set of rules

A start symbol is a special element of the nonterminals of a grammar

ICOM 4036: Programming Languages 39

BNF Rules

- An abstraction (or nonterminal symbol)
can have more than one RHS

<stmt> — <single stmt>
| begln <stmt list> end

ICOM 4036: Programming Languages

40

Describing Lists

- Syntactic lists are described using
recursion

<ldent list> — 1dent
| 1dent, <ident list>

- A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

ICOM 4036: Programming Languages

41

Example: Grammar sentences

Consider the following grammar
<s> > <A>ab
<A> > <A>b | b
 2> a | a

Which of the following sentences are in the language
generated by this grammar?

baab
bbbab
bbaaaa

bbaab

A W N =

ICOM 4036: Programming Languages

42

Example: Regular Grammar

- Regular Grammar
<S> a<S>
<S>2>b<A>

<A>->e | c<A>

- Regular expression
a?'\‘bc“k

ICOM 4036: Programming Languages

43

Non Regular Grammar

. Context free grammar
<S>-> a<S>b | ab

- {a"b" : n>0} is not regular since the number
of a’s controls the number of b’s

- This type of operation is not allowed according
to the definition of regular expressions

ICOM 4036: Programming Languages 44

Context free grammars

If we remove the regular-grammar restrictions, we
get a class of grammars known as the Type 2 or
context-free grammars. Such grammars can
“‘count” arbitrarily high, at least under the right

circumstances.
- For example, here is a language of correctly nested
parentheses
- S>S’CS) e
- It recognizes the empty string, ‘()’, ‘00’, ‘(0)’, ‘(00)))’

ICOM 4036: Programming Languages 45

Example: Grammar Derivations

<program> — <stmts>

<stmts> — <stmt> | <stmt> ; <stmts>

<stmt> — <var> = <expr>

<var> = a | b | ¢ | d

<expr> — <term> + <term> | <term> - <term>

<term> — <var> | const

ICOM 4036: Programming Languages

46

Example: Grammar Derivation

<program> => <stmts> => <stmt>

=> <var> = <expr>

=> a = <expr>
= <term> + <term>
= <var> + <term>
b + <term>

I
V

¥ v v W
I

= b + const

ICOM 4036: Programming Languages 47

Derivations

- Every string of symbols in a derivation is a
sentential form

- A sentence is a sentential form that has
only terminal symbols

- A leftmost derivation always choose
leftmost non-terminals to be expanded.

ICOM 4036: Programming Languages 48

Parse Tree

- A hierarchical representation of a derivation

<program>

|
<stmts>
|
<stmt>
N
<var> = <expr>
| PN

a <term> + <term>

<var> const
|

b

ICOM 4036: Programming Languages

49

Ambiguity in Grammars

- A grammar is ambiguous if and only if it
generates a sentential form that has two or
more distinct parse trees

- Checking a grammar is ambiguous is
undecidable
- Reduction from Post Correspondence problem

- Ambiguous grammars lead to ambiguous
semantics!

ICOM 4036: Programming Languages 50

An Ambiguous Expression Grammar

<expr> — <expr> <op> <expr> | const
<op> — * | 4+
<expr> <expr>
<expr> <op> <expr> <expr> <op> <expr>
<expr> <op> <expr> <expr> <op> <expr>

\ Vo

const + const * const const + const * const

ICOM 4036: Programming Languages 51

An Unambiguous Expression Grammar

- If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> — <expr> + <term> | <term>
<term> — <term> * const| const

<expr>

AN

<expr> + <term>
| SN T~

<term> <term> * const
| |

const const

ICOM 4036: Programming Languages 52

Associativity of Operators

- Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
<expr>
<expr> + const

/N

<expr> + const

const

ICOM 4036: Programming Languages 53

Extended BNF

- Optional parts are placed in brackets []
<proc call> -> 1dent [(<expr list>)]

- Alternative parts of RHSs are placed
inside parentheses and separated via
vertical bars

<term> — <term> (+]|-) const

- Repetitions (0O or more) are placed inside
braces { }

<i1dent> - letter {letter|digit}

ICOM 4036: Programming Languages

BNF and EBNF

- BNF

<expr> — <expr> + <term>
| <expr> - <term>
| <term>
<term> — <term> * <factor>
| <term> / <factor>
| <factor>

- EBNF
<expr> — {<expr>(+ | -)} <term>
<term> — {<term>(* | /) }<factor>

ICOM 4036: Programming Languages

55

Example: Grammar Definition

Function: type IDENTIFIER LEFT_PARENT optional_arguments RIGHT_PAREN
LEFT_PAREN LEFT_CURLY statements RIGHT_CURLY

Type: TYPE_KEYWORD | user_defined_type

Optional-arguments: null | argument | argument COMMA arguments
Statements: statement | statement statements

Statement: declaration | equals_expr |

Declaration: type IDENTIFIER optional_declarations SEMICOLON
equals_expr: IDENTIFIER EQUAL_SIGN expression

Expression: plus_expr | equals_expr | ...

plus_expression: expression PLUS_SIGN expression

ICOM 4036: Programming Languages 56

Example: Java language specification

PrimitiveType:
NumericType
boolean

NumericType:
Integral Type
FloatingPointType

Integral Type: one of
byte short int long char

FloatingPointType: one of
float double

ICOM 4036: Programming Languages

57

Syntax Analysis

- The syntax analysis portion of a language
processor nearly always consists of two
parts:

- A low-level part called a /lexical analyzer
(mathematically, a finite automaton based on a
regular grammar)

- A high-level part called a parser
(mathematically, a push-down automaton based
on a context-free grammar)

ICOM 4036: Programming Languages 58

Lexical Analysis

- Breaks the text down into the smallest
useful atomic units, known as tokens

- while throwing away (or at least, putting to one
side) information, such as white space and

comments
- Groups characters into tokens to facilitate
the parsing process
- X+Y *
- X+Y++

ICOM 4036: Programming Languages

59

Lexical Analysis

- Approaches to building a lexical analyzer:

- Write a formal description of the tokens and use
a software tool that constructs table-driven
lexical analyzers given such a description

- Design a state diagram that describes the
tokens and write a program that implements the
state diagram

ICOM 4036: Programming Languages 60

Example: Lexical Analysis

int main ()

{

float foo, bar, baz;
foo = bar + baz;

}

ICOM 4036: Programming Languages

Lexeme Token Category
‘int’ TYPE_KEYWORD
‘main’ IDENTIFIER

‘“(LEFT_PAREN

‘y RIGHT_PAREN
4 LEFT_CURLY
‘loat” TYPE_KEYWORD
‘foo’ IDENTIFIER

‘) COMMA

‘bar’ IDENTIFIER

‘) COMMA

‘baz’ IDENTIFIER

“ SEMICOLON
‘foo’ IDENTIFIER

=t OPERATOR
‘bar’ IDENTIFIER

‘“+’ OPERATOR
‘baz’ IDENTIFIER

“ SEMICOLON

‘v RIGHT_CURLY

61

Example: Lexical Analysis

Lexeme Token
‘int’ TYPE_KEYWORD
‘main’ IDENTIFIER

‘(‘ LEFT_PAREN
Nothing nothing

‘)’ RIGHT_PAREN
9" LEFT_CURLY
‘float’ TYPE_KEYWORD
‘foo’ IDENTIFIER

‘) COMMA

‘bar’ IDENTIFIER

‘) COMMA

‘baz’ IDENTIFIER

¢ SEMICOLON
‘foo’ IDENTIFIER
=) OPERATOR
‘bar’ IDENTIFIER
‘“+’ OPERATOR
‘baz’ IDENTIFIER

¢ SEMICOLON
‘v RIGHT_CURLY

ICOM 4036: Programming Languages

CFG Definition

type
IDENTIFIER
LEFT_PAREN
optional_arguements
RIGH_PAREN
LEFT_CURLY
Statements

RIGHT_CURLY

62

Example: Lexical Analysis

If (i==) IF, LPAR, ID("i"),

z = 0; /* comment */ EQUALS, ID("j"), RPAR,
else ID("z"),

z= 1, ASSIGN,INTLIT("0"),

SEMI, ELSE, ID("z"),

\tif(i== j)\n ASSIGN, INTLIT("1"),
\t\tz = 0; /* comment*/\n SEMI

\telse\n

\t\tz= 1;

ICOM 4036: Programming Languages

63

State Diagram

Letter/Digit

addChar; getChar

> return lookup (lexeme)

Letter
<E§§E;>addChar; getChar

Digit
—> @ » return Int Lit
addChar; getChar -

addChar; getChar

ICOM 4036: Programming Languages 64

Implementing the State Diagram

int CharClass;
char lexeme [100];
char nextChar;

int lexLen;

int LETTER=0;

int DIGIT=1;

int UNKNOWN=-1;

/*addChar - a function to add nextChar to lexeme */

void addChar () {
if (lexLen <=99)
lexeme [lexLen++]=nextChar;
else printf (“Error: Lexeme is too long \n”);

/* getNonBlank - call getChar until it returns a non-whitespace character */
void getNonBlank () {

while (isspace (nextChar))
getChar () ;

ICOM 4036: Programming Languages

65

Implementing the State Diagram

/*getChar - a function to get the next character of input and determine its
character class*/

void getChar () {
if (isalpha (nextChar))
charClass = LETTER;
else if (isdigit(nextChar))
charClass = DIGIT;
else
charClass = UNKNOWN

}

/*lex - a simple lexical analyzer*/

int lex () {
lexlen =0;
static int first=1l;

if (first){
getChar () ;
first=0;

}

getNonBlank () ;

switch (CharClass) {

ICOM 4036: Programming Languages

Implementing the State Diagram

switch (charClass) {

case LETTER:
addChar () ;
getChar () ;
while (charClass == LETTER || charClass == DIGIT) {
addChar () ;
getChar() ;
}
return lookup (lexeme) ;
break;

case DIGIT:
addChar () ;
getChar() ;
while (charClass == DIGIT) {
addChar () ;
getChar() ;
}
return INT LIT;
break;

} /*End of switch*/

} /*End of lex*/

ICOM 4036: Programming Languages

67

State Diagram

- Problem: Design a state diagram to
recognize one form of the comments of C-
based programming languages, those that
begin with /* and end with */

other

/
OO O
w

other

ICOM 4036: Programming Languages 68

Example: state diagram

For-Keyword = for
Identifier = [a-z][a-z0-9]*

accept aceept
£ identifier 5 identifier]

®

1dennﬁc (2-20-9]

ICOM 4036: Programming Languages

accept
for-keyword

69

Lexical Analyzer with Lex

Lex is a domain-specific programming language for creating programs to
process streams of input characters.

A Lex program has the following form:
declarations
%%
translation rules
%%
auxiliary functions

The declarations section can contain declarations of variables, manifest
constants, and regular definitions. The declarations section can be empty.

The translationrules are each of the form pattern {action}

- Each patternis a regular expression which may use regular definitions
defined in the declarations section.

- Each action is a fragment of C-code. The braces around the action may
be omitted if the action is a single statement.

ICOM 4036: Programming Languages 70

Lexical Analyzer with Lex

a\+b matches the string a+b.

. matches any character excepta newline.

A matches the empty string at the beginning of a line.
$ matches the empty string at the end of a line.

[a-z] matches any lowercase letter between a and z.
[A-Za-z0-9] matches any alphanumeric character.

[Aabc] matches any character exceptan a, or a b, or a c.

[A0-9] matches any nonnumeric character.

a* matches a string of zero or more a's.

a+ matches a string of one or more a's.

.a? matches a string of zero or one a's.

a{2,5} matches any string consisting of two to five a's.
a/b matches an a when followed by a b.

\n matches a newline.

\t matches a tab

ICOM 4036: Programming Languages

71

Example with Lex

int num_words = O,num_numbers = 0, num_lines = O;
word [A-Za-z]+

number [0-9]+

%%

{word} {+ +num_words;}

{number} {++num_numbers;}

\n {++num_lines;}

Al

%%

int main() {

yylex();
printf("# of words = %d, # of numbers = %d, # of lines

num_words, num_numbers, num_lines);

ICOM 4036: Programming Languages

%d\n",

72

Example with Lex

- Put lex program into a file file.l

- Compile the lex program with the
command
- lex file.l

- This command produces an output file lex.yy.c.

Compile this output file with the C
compiler and the lex library -ll

- gcc lex.yy.c -l
- The resulting a.out is the lexical processor.

ICOM 4036: Programming Languages

73

The Parsing Problem

- Given an input program:

- Operates on tokens and groups them into useful
grammatical structures.

- Find all syntax errors; for each, produce an
appropriate diagnostic message and recover
quickly

- Produce the parse tree, or at least a trace of the
parse tree, for the program

ICOM 4036: Programming Languages 74

The Parsing Problem (cont.)

- Two categories of parsers

- Top down - produce the parse tree, beginning
at the root

- Order is that of a leftmost derivation
- Traces or builds the parse tree in preorder

- Bottom up - produce the parse tree, beginning
at the leaves

- Order is that of the reverse of a rightmost derivation

ICOM 4036: Programming Languages 75

The Parsing Problem (cont.)

- Top-down Parsers

- Given a sentential form, xAa , the parser must
choose the correct A-rule to get the next
sentential form in the leftmost derivation, using
only the first token produced by A

- The most common top-down parsing
algorithms:

- Recursive descent - a coded implementation
- LL parsers - table driven implementation

ICOM 4036: Programming Languages 76

The Parsing Problem (cont.)

- Bottom-up parsers

- Given a right sentential form, o, determine what
substring of a is the right-hand side of the rule
in the grammar that must be reduced to
produce the previous sentential form in the
right derivation

- The most common bottom-up parsing
algorithms are in the LR (Left-to-right,
Rightmost derivation) type.

ICOM 4036: Programming Languages

77

Recursive-Descent Parsing

- There is a subprogram for each
nonterminal in the grammar, which can
parse sentences that can be generated by
that nonterminal

- EBNF is ideally suited for being the basis for
a recursive-descent parser, because EBNF
minimizes the number of nonterminals

ICOM 4036: Programming Languages 78

Recursive-Descent Parsing (cont.)

- A grammar for simple expressions:

<expr> — <term> {(+ | -) <expr>}
<term> — <factor> {(* | /) <term>}
<factor> — id | int constant | (<expr>)

ICOM 4036: Programming Languages 79

Recursive-Descent Parsing (cont.)

- Assume we have a lexical analyzer named
lex, wWhich puts the next token code in
nextToken

- The coding process when there is only one
RHS (Right Hand Side):

- For each terminal symbol in the RHS, compare it
with the next input token; if they match,
continue, else there is an error

- For each nonterminal symbol in the RHS, call its
associated parsing subprogram

ICOM 4036: Programming Languages 80

Recursive-Descent Parsing (cont.)

/* Function expr
Parses strings in the language
generated by the rule:
<expr> - <term> {(+ | -) <term>}
*/

void expr() {
/* Parse the first term */

term() ;

/* As long as the next token is + or -, call
lex to get the next token and parse the
next term */

while (nextToken == ADD OP ||
nextToken == SUB_OP) {
lex () ;
term() ;

ICOM 4036: Programming Languages

81

Recursive-Descent Parsing (cont.)

- A nonterminal that has more than one RHS
requires an initial process to determine
which RHS it is to parse

- The correct RHS is chosen on the basis of the
next token of input (the lookahead)

- The next token is compared with the first token
that can be generated by each RHS until a match
is found

- If no match is found, it is a syntax error

ICOM 4036: Programming Languages 82

Recursive-Descent Parsing (cont.)

/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>)
*/
void term() {
printf ("Enter <term>\n");
/* Parse the first factor */
factor () ;
/* As long as the next token is * or /,
next token and parse the next factor */
while (nextToken == MULT OP || nextToken == DIV OP) {
lex();
factor () ;
}
printf ("Exit <term>\n");
} /* End of function term */

ICOM 4036: Programming Languages

83

Recursive-Descent Parsing (cont.)

/* Function factor
Parses strings in the language
generated by the rule:
<factor> -> id | (<expr>) */

void factor() {

/* Determine which RHS */
if (nextToken) == ID CODE || nextToken == INT CODE)

/* For the RHS id, just call lex */
lex();

/* If the RHS is (<expr>) - call lex to pass over the left parenthesis,
call expr, and check for the right parenthesis */

else if (nextToken == LP CODE) ({
lex();
expr () ;
if (nextToken == RP_CODE)
lex();
else
error () ;
} /* End of else if (nextToken == ... */
else error(); /* Neither RHS matches */

ICOM 4036: Programming Languages

84

Recursive-Descent Parsing (cont.)

Trace of the recursive descent parser for the stringa + b * ¢

Call lex /* returns a */
Enter <expr>

Enter <term>

Enter <factor>

Call lex /* returns + */
Exit <factor>

Exit <term>

Call lex /* returns b */
Enter <term>

Enter <factor>

Call lex /* returns * */
Exit <factor>

Call lex /* returns c */
Enter <factor>

Call lex /* returns end-of-input */
Exit <factor>

Exit <term>

Exit <expr>

ICOM 4036: Programming Languages

Bottom-up Parsing

- The Bottom-up Parsing problem is finding
the correct RHS in a right-sentential form
to reduce to get the previous right-
sentential form in the derivation

- LR Parsers

- Canonical LR (Knuth, 1965): original LR
algorithm

ICOM 4036: Programming Languages 86

Bottom-up Parsing (cont.)

- Advantages of LR parsers:

- They will work for nearly all grammars that
describe programming languages.

- They work on a larger class of grammars than
other bottom-up algorithms, but are as efficient
as any other bottom-up parser.

- The LR class of grammars is a superset of the
class parsable by LL parsers.

ICOM 4036: Programming Languages 87

Structure of An LR Parser

- An LR configuration stores the state of an LR parser

(SoX:S:X5S5... XSty @ia;+1...2,9)

Top
Parse Stack ¢ Input

So | X11$1 e | Xm i @i e |am| $

Sm aI
A Pushdown automata is a H H

deterministic finite state automaton
with the addition of a stack for a .
memory indicating which states the Parser Parsing
parser has passed through Code Table

ICOM 4036: Programming Languages 88

Bottom-up Parsing (cont.)

- LR
tab
tab

narsers are table driven, where the
e has two components, an ACTION

e and a GOTO table

- The ACTION table specifies the action of the
parser, given the parser state and the next
token

- Rows are state names; columns are terminals

- The GOTO table specifies which state to put
on top of the parse stack after a reduction

action is done

- Rows are state names; columns are nonterminals

ICOM 4036: Programming Languages

89

Bottom-up Parsing (cont.)

- Initial configuration: (Sy, a;...a,%)

- Parser actions:

- If ACTIONIS,,, a;] = Shift S, the next
configuration is:

(SoX:S1X5S5.. . X SiaiS, aj.1...a,%)
- If ACTION[S,,, a;] = Reduce A —=p and S =

GOTOIS,,.,, Al, where r = the length of B, the
next configuration is

(SoX1S1X5S5.. X Sm_/AS, aiai,q...a,)

ICOM 4036: Programming Languages

90

Bottom-up Parsing (cont.)

- Parser actions (continued):

- If ACTION[S,,, a;] = Accept, the parse is
complete and no errors were found.

- If ACTION[S,,, a;] = Error, the parser calls an
error-handling routine.

ICOM 4036: Programming Languages

91

LR Parsing Table

o v kA wWwh =
—
N2
T

ICOM 4036: Programming Languages

Action Goto
State id + * () $ T F

0 S5 S4 2 3
1 S6 accept

2 R2 S7 R2 R2

3 R4 R4 R4 R4

4 S5 S4 2 3
5 R6 R6 R6 R6

6 S5 S4 9 3
7 S5 S4 10
8 S6 ST11

9 R1 S7 R1 R1
10 R3 | R3 R3 R3
1 R5 | R5 R5 R5

92

Trace of a parse

Stack
0
0id5
OF3
0T2
0T2*7
0T2*7(4
0T2*7(4id5
0T2*7(4F3
0T2*7(4T2
0T2*7(4E8
0T2*7(4E8+6
0T2*7(4E8+6id5
0T2*7(4E8+6F3
0T2*7(4E8+6T9
0T2*7(4E8
O0T2*7(4E8)11
0T2*7F10
0T2
OE1

ICOM 4036: Programming Languages

Input

id * (id + id) $
*(id +id) $
*(id +id) $
*(id +id) $
(id +id) $
id+id) $

Action

Shift 5

Reduce 6 (Use GOTOI[O, F])
Reduce 4 (Use GOTO[O, T])
Shift 7

Shift 4

Shift 5

Reduce 6 (Use GOTO[4, F])
Reduce 4 (Use GOTO[4, T])
Reduce 2 (Use GOTO[4, E])
Shift 6

Shift 5

Reduce 6 (Use GOTO[6, F])
Reduce 4 (Use GOTO[6, T])
Reduce 1 (Use GOTO[4, E])
Shift 11

Reduce 5 (Use GOTO[7, F])
Reduce 3 (Use GOTOI[O, T])
Reduce 2 (Use GOTOI[O, E])
ACCEPT

93

Parsers Classification

- LL(k) Top down parser

- LL(1) are simple parsers but cannot recognize all
context free grammars

- LR(k) Bottom up parser

- LR(1) are more powerful
- LALR(T)

- Not as powerful as full LR(1) but simpler to
implement

- Yacc uses LALR(1) parse tables to construct a
restricted LR

ICOM 4036: Programming Languages 94

Recommended Links

- Parsing Simulator

- Compiler component generators
- lexical analyzer generators: lex, flex
- syntax analyzer generator: yacc, bison

- PLY (Python Lex-Yacc)

- ANTLR lexer—parser generator
- Compact Guide to Lex & Yacc
- Flex

- GNU Bison

- JavaCC

ICOM 4036: Programming Languages

95

Summary

BNF and context-free grammars are equivalent meta-
languages to describe syntax

Regular expressions and Finite Automata
Syntax analysis
- Lexical Analysis (Produce tokens)
- Parsing (Produces a parse tree)
Lexical Analyzer
Parsing
- Top-down approach
- Recursive-descent parser
- Bottom-up approach

- The LR family of shift-reduce parsers is the most
common bottom-up parsing approach

ICOM 4036: Programming Languages 96

