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Introduction

Syntax: the form or structure of the expressions, statements,
and program units

Semantics: the meaning of the expressions, statements, and
program units

Syntax and semantics provide a language’s definition
- Syntactic specification of a programming language
- Construction of efficient parsers
- Error detection
- Extension language and new constructs
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Reqgular Expressions

Regular Expressions: A concise notation for regular sets
(1) ®@ denotes the regular set P.

(2) A denotes the regular set {A}.

(3) a denotes the regular set {a}.

(4) If p and q are regular expressions denoting the regular sets P and Q
respectively, then

(a) (plq) denotes P U Q (Union)
(b) (pq) denotes P Q (Concatenation)
(¢) (p)* denotes P* (Kleene Closure)

(5) Nothing else is a regular expression.

Notation:
p+=p* p (non reflexive closure)
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Reqgular Expressions

RE Regular language Description
alb {a,b}

(alb)(alb) {aa, ab, ba, bb}

a* {e, a, aa, aaa, ...}

a*b {b,ab, aab, aaab, ...}

(a|b)* {e, a, aa, aaa, ..., b, bb, bbb...

ab, abb,.... aab, aabb, ....}
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Regular Expressions

- Regular Expression
(10*1(0[1)*) | (01*0(0[1)%)
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Finite Automata

Deterministic Finite Automaton (DFA)

M=(Q,Z,0,q,F)
where
(1) Q 1s a finite non-empty set of states
(2) 2 1s a finite set of input symbols
(3) qo €Q (initial state)
(4) F € Q (final states)
(5) 0 is a partial mapping from Q x Z to Q
(transition function: move function)
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Non-deterministic Finite Automaton (NFA)

e May have a choice of moves, 1.e. 0 is a mapping
from Q x = to 29

e Also allows €&-transitions,i.e.,0 (q,€)C Q
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NFA Example

(alb)*abb = { abb, aabb, babb, aaabb, bbabb,...}

a
start 0‘ | c i = ’ @
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DFA Example

DFA:
1. No state has an e-transition

2. For each state S and input symbol a, there is at most one
edge labeled a leaving S.
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Finite Automata Construction

 For every NFA M, there 1s a DFA M, for which
L(M; ) = L(M; )
o Thompson’s Construction:

— Systematically generate an NFA for a given Regular
Expression.

e Subset construction algorithm:

— Converts an NFA to an equivalent DFA

— Key: identify sets of states of NFA that have similar
behavior, and make each set a single state of the DFA.
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From a Regular Expression to an NFA

Thomson’s Construction

! @ © N(e)
d
2 @ ’@ N(a), a&X

g (D g
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From a Reqgular Expression to an NFA

€ '/g\ €
C RO HD e
€

6  Combine single NFAs for complex structures

ICOM 4036: Programming Languages 15



From a Regular Expression to an NFA

Example : (alb)*abb

a b
4

=@ >@ 4.0 >@

— e

e
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From a Regular Expression to an NFA

Example : (alb)*abb

€
d
€
0> (1) 6
€
o6,
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From a Reqgular Expression to an NFA

Example : (alb)*abb
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From an NFA

to a DFA

Subset Construction

Operation

e—closure(s)

e—closure(T)

Move(T,a)
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Description

Set of NFA states reachable from an
NFA state s on e-transitions along

Set of NFA states reachable from some
NFA state s in T on e-transitions along

Set of NFA states reachable from some
NFA state set with a transition on input
symbol a
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From an NFA to a DFA

Subset Construction
Initially, e-closure (s,) is the only states in D and it is
unmarked
while there is an unmarked state T in D do
mark T;
for each input symbol a do
U:= e-closure(move(T,a)),
if Uis not in D then
add U as an unmarked state to D
Dtran[T,a]:=U;
end(for)
end(while)

ICOM 4036: Programming Languages

20



From an NFA to a DFA

Example
e-closure(0)={0,1,2,4,7}=A

e-closure(move(A,a))=
e-closure({3,8)={1,2,3,4,6,7,8}=B
Thus, Dtran[A,a]=B

e-closure(move(A,b))=

e-closure({5})={1,2,4,5,6,7}=C
Thus, Dtran[A,b]=C
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From an NFA to a DFA

e-closure(move(B,a))=
e-closure({3,8})=B
Thus, Dtran[B,a]=B

e-closure(move(B,b))=

e-closure({5,9)={1,2,4,5,6,7,9}=D
Thus, Dtran[B,b]=D
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From an NFA to a DFA

e-closure(move(C,a))=
e-closure({3,8})=B
Thus, Dtran[C,a]=B

e-closure(move(C,b))=

e-closure({5})=C
Thus, Dtran[C,b]=C
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From an NFA to a DFA

e-closure(move(D,a))=
e-closure({3,8})=B
Thus, Dtran[D,a]=B

e-closure(move(D,b))=

e-closure({5,10})={1,2,4,5,6,7,10}=E
Thus, Dtran[D,b]=E
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From an NFA to a DFA

e-closure(move(E,a))=
e-closure({3,8})=B
Thus, Dtran[E,a]=B

e-closure(move(E,b))=

e-closure({5})=C
Thus, Dtran[E,b]=C

ICOM 4036: Programming Languages

25



From an NFA to a DFA

states a b
A |B|C
B B |D
C B |C
D |B|E
E B |C
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From a DFA to a minimal DFA

Hopcroft Algorithm

1. Construct an initial partition P of set of states with two groups:
The accepting states F and the nonaccepting states S-F

2. Apply the following procedure to P to construct a new partition
new
for each group G of P do
divide G into subgroups such that two states

of G are in the same subgroup if and only if for all input symbol a,
states s and t have transitions on a to states in the same group of
P

Réplace G in P,y by the set of all subgroup formed.
3. If Phew =P let = Psna) =P and go to 4. Otherwise repeat (2) with P=

new.

4. Choose one state in each group of the partition Psna as the
representative for that group

5. Contruct the new transition table by replacing the states in a
group by the respresentative
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From a DFA to a minimal DFA

1. P={ (ABCD), (E)}

2. P_new={(ABC), (D), (E)} D->E
3. P_new={(AC), (B), (D), (E)} B—->D
4
5

. P_final={(AC), (B), (D), (E)}

. We choose A as the representative for the
subgroup (AC)
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From an NFA to a DFA

states a b
A B |A
B B|D
D B |E
E B |A

b b
b b
e N
' d
d

a
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RE to NFA: Example

- Desing a NFA for the following regular

expression
(alb)*a(alb)
e
e 2 — 3 & ] e 9 — 10 &
0 —25 1 6 €57 — 38 13
o NS 4 — 5 5 oS 1 — 12 5
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NFA to DFA: Example

eReduce the NFA to a DFA

E(0)={01247}=A

E(move Aa)=E(38)={1234678911}=B
E(move A b)=E(5)={12456 7}=C

E(move Ba)=E(3810)={123467891013}=D
E(move Bb)=E(512)={1245671213}=E
E(move Ca)=E(38)=8B

E(move C b)=E (5) =C
E(move Da)=E(38 10) =D

E(move D b)= E(5)=C
E(mov E a)=E(3 8)=B

E(mov E b)=E(5)=C
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NFA to DFA
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Regular Expressions (summary)

REs are commonly used to define search patterns and the
lexical structure of programming Languages

REs are a convenient mechanism for describing languages
but they do not give a method for recognizing tokens

- Construct a NFA for the regular expression.
- Convert the NFA to an equivalent DFA.
- Minimize the number of states in the DFA
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More on Reqgular Expressions

- {a"b" : n>0} is not regular since the number
of a’s controls the number of b’s

- This type of operation is not allowed according
to the definition of regular expressions

- Many real world REs engines implement features
that cannot be described by REs theory

- The Python regular expression r'(a*)b\1" recognizes a"ba"

- \1 matches the same string matched by the parenthesized sub-
expression.
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Chomsky Hierarchy

Type-0 unrestricted Turing .
machine Unrestricted
(TM)
Type-1 Context Linear .
sensitive bounded TM Context Sensitive
Type-2 Context Non
free deterministic
pushdown Context Free
automaton
Type-3 Regular Finite State Regular
Automaton
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Chomsky Hierarchy

Context-free Grammars

Regular Grammars \

\
\

(Regular Expressions>.

.\.
~

‘ “.Pushdown A@

\

E@tate Automata >

For Regular Grammars there is always a corresponding deterministic automaton. For
Context-free grammars there is none unless the grammar is unambiguous.
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Context-free Grammar

A formal grammar is define as

1)
2)
3)
4)

G=(T,N,S,P)

Tokens (terminals)

Constructs (nonterminals)

Starting nonterminal (main construct)

Productions (rules that define nonterminal in terms of sequences

of terminals and nonterminals)

A context-free grammar (CFG) is a formal grammar in which every

production rule is of the form V — w where
V is a single nonterminal symbol
w is a string of terminals and/or non-terminals (w can be empty).

The language of a grammar G=(T;N;R; S) usually denoted by L(G), is

ICOM 4036: Programming Languages

defined as L(G)={s | S-> * s, s in T*}

37



BNF and Context-Free Grammars

Context-Free Grammars
- Developed by Noam Chomsky in the mid-1950s
- Meant to describe the syntax of natural languages

- Context free means replacing non-terminals in any order
(i.e., regardless of context) produces same result (as long
as you use same productions).

- If we use the full power of the context-free languages we
get compilers which in general are inefficient, and
probably not so good in handling erroneous input

- Backus-Naur Form (1959)
- Invented by John Backus to describe Algol 58
- BNF is equivalent to context-free grammars
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BNF Fundamentals

A rule has a left-hand side (LHS), which is a nonterminal, and a right-hand
side (RHS), which is a string of terminals and/or nonterminals

- Terminals are lexemes

-Nonterminals are often enclosed in angle brackets

- Examples of BNF rules:
<ident 1list> - identifier | i1dentifier, <ident list>
<if stmt> - if <logic expr> then <stmt>

-Grammar: a finite non-empty set of rules

A start symbol is a special element of the nonterminals of a grammar

ICOM 4036: Programming Languages 39



BNF Rules

- An abstraction (or nonterminal symbol)
can have more than one RHS

<stmt> — <single stmt>
| begln <stmt list> end

ICOM 4036: Programming Languages
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Describing Lists

- Syntactic lists are described using
recursion

<ldent list> — 1dent
| 1dent, <ident list>

- A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

ICOM 4036: Programming Languages
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Example: Grammar sentences

Consider the following grammar
<s> > <A>a<B>b
<A> > <A>b | b
<B> 2> a<B> | a

Which of the following sentences are in the language
generated by this grammar?

baab
bbbab
bbaaaa

bbaab

A W N =
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Example: Regular Grammar

- Regular Grammar
<S> a<S>
<S>2>b<A>

<A>->e | c<A>

- Regular expression
a?'\‘bc“k

ICOM 4036: Programming Languages
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Non Regular Grammar

. Context free grammar
<S>-> a<S>b | ab

- {a"b" : n>0} is not regular since the number
of a’s controls the number of b’s

- This type of operation is not allowed according
to the definition of regular expressions
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Context free grammars

If we remove the regular-grammar restrictions, we
get a class of grammars known as the Type 2 or
context-free grammars. Such grammars can
“‘count” arbitrarily high, at least under the right

circumstances.
- For example, here is a language of correctly nested
parentheses
- S>S’CS ) e
- It recognizes the empty string, ‘()’, ‘00’, ‘(0)’, ‘(00)))’
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Example: Grammar Derivations

<program> — <stmts>

<stmts> — <stmt> | <stmt> ; <stmts>

<stmt> — <var> = <expr>

<var> = a | b | ¢ | d

<expr> — <term> + <term> | <term> - <term>

<term> — <var> | const

ICOM 4036: Programming Languages
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Example: Grammar Derivation

<program> => <stmts> => <stmt>

=> <var> = <expr>

=> a = <expr>
= <term> + <term>
= <var> + <term>
b + <term>

I
V

¥ v v W
I

= b + const
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Derivations

- Every string of symbols in a derivation is a
sentential form

- A sentence is a sentential form that has
only terminal symbols

- A leftmost derivation always choose
leftmost non-terminals to be expanded.
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Parse Tree

- A hierarchical representation of a derivation

<program>

|
<stmts>
|
<stmt>
N
<var> = <expr>
| PN

a <term> + <term>

<var> const
|

b

ICOM 4036: Programming Languages
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Ambiguity in Grammars

- A grammar is ambiguous if and only if it
generates a sentential form that has two or
more distinct parse trees

- Checking a grammar is ambiguous is
undecidable
- Reduction from Post Correspondence problem

- Ambiguous grammars lead to ambiguous
semantics!
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An Ambiguous Expression Grammar

<expr> — <expr> <op> <expr> | const
<op> — * | 4+
<expr> <expr>
<expr> <op> <expr> <expr> <op> <expr>
<expr> <op> <expr> <expr> <op> <expr>

\ Vo

const + const * const const + const * const
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An Unambiguous Expression Grammar

- If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> — <expr> + <term> | <term>
<term> — <term> * const| const

<expr>

AN

<expr> + <term>
| SN T~

<term> <term> * const
| |

const const
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Associativity of Operators

- Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
<expr>
<expr> + const

/N

<expr> + const

const
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Extended BNF

- Optional parts are placed in brackets [ ]
<proc call> -> 1dent [ (<expr list>) ]

- Alternative parts of RHSs are placed
inside parentheses and separated via
vertical bars

<term> — <term> (+]|-) const

- Repetitions (0O or more) are placed inside
braces { }

<i1dent> - letter {letter|digit}
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BNF and EBNF

- BNF

<expr> — <expr> + <term>
| <expr> - <term>
| <term>
<term> — <term> * <factor>
| <term> / <factor>
| <factor>

- EBNF
<expr> — {<expr>(+ | -)} <term>
<term> — {<term>(* | /) }<factor>

ICOM 4036: Programming Languages
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Example: Grammar Definition

Function: type IDENTIFIER LEFT_PARENT optional_arguments RIGHT_PAREN
LEFT_PAREN LEFT_CURLY statements RIGHT_CURLY

Type: TYPE_KEYWORD | user_defined_type

Optional-arguments: null | argument | argument COMMA arguments
Statements: statement | statement statements

Statement: declaration | equals_expr | .....

Declaration: type IDENTIFIER optional_declarations SEMICOLON
equals_expr: IDENTIFIER EQUAL_SIGN expression

Expression: plus_expr | equals_expr | ...

plus_expression: expression PLUS_SIGN expression
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Example: Java language specification

PrimitiveType:
NumericType
boolean

NumericType:
Integral Type
FloatingPointType

Integral Type: one of
byte short int long char

FloatingPointType: one of
float double

ICOM 4036: Programming Languages
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Syntax Analysis

- The syntax analysis portion of a language
processor nearly always consists of two
parts:

- A low-level part called a /lexical analyzer
(mathematically, a finite automaton based on a
regular grammar)

- A high-level part called a parser
(mathematically, a push-down automaton based
on a context-free grammar)
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Lexical Analysis

- Breaks the text down into the smallest
useful atomic units, known as tokens

- while throwing away (or at least, putting to one
side) information, such as white space and

comments
- Groups characters into tokens to facilitate
the parsing process
- X+Y *
- X+Y++

ICOM 4036: Programming Languages
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Lexical Analysis

- Approaches to building a lexical analyzer:

- Write a formal description of the tokens and use
a software tool that constructs table-driven
lexical analyzers given such a description

- Design a state diagram that describes the
tokens and write a program that implements the
state diagram
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Example: Lexical Analysis

int main ()

{

float foo, bar, baz;
foo = bar + baz;

}
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Lexeme Token Category
‘int’ TYPE_KEYWORD
‘main’  IDENTIFIER

‘“( LEFT_PAREN

‘y RIGHT_PAREN
4 LEFT_CURLY
‘loat”  TYPE_KEYWORD
‘foo’ IDENTIFIER

‘) COMMA

‘bar’ IDENTIFIER

‘) COMMA

‘baz’ IDENTIFIER

“ SEMICOLON
‘foo’ IDENTIFIER

=t OPERATOR
‘bar’ IDENTIFIER

‘“+’ OPERATOR
‘baz’ IDENTIFIER

“ SEMICOLON

‘v RIGHT_CURLY
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Example: Lexical Analysis

Lexeme Token
‘int’ TYPE_KEYWORD
‘main’ IDENTIFIER

‘(‘ LEFT_PAREN
Nothing nothing

‘)’ RIGHT_PAREN
9" LEFT_CURLY
‘float’ TYPE_KEYWORD
‘foo’ IDENTIFIER

‘) COMMA

‘bar’ IDENTIFIER

‘) COMMA

‘baz’ IDENTIFIER

¢ SEMICOLON
‘foo’ IDENTIFIER
=) OPERATOR
‘bar’ IDENTIFIER
‘“+’ OPERATOR
‘baz’ IDENTIFIER

¢ SEMICOLON
‘v RIGHT_CURLY
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type
IDENTIFIER
LEFT_PAREN
optional_arguements
RIGH_PAREN
LEFT_CURLY
Statements

RIGHT_CURLY
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Example: Lexical Analysis

If (i==) IF, LPAR, ID("i"),

z = 0; /* comment */ EQUALS, ID("j"), RPAR,
else ID("z"),

z= 1, ASSIGN,INTLIT("0"),

SEMI, ELSE, ID("z"),

\tif(i== j)\n ASSIGN, INTLIT("1"),
\t\tz = 0; /* comment*/\n SEMI

\telse\n

\t\tz= 1;

ICOM 4036: Programming Languages
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State Diagram

Letter/Digit

addChar; getChar

> return lookup (lexeme)

Letter
<E§§E;>addChar; getChar

Digit
—> @ » return Int Lit
addChar; getChar -

addChar; getChar
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Implementing the State Diagram

int CharClass;
char lexeme [100];
char nextChar;

int lexLen;

int LETTER=0;

int DIGIT=1;

int UNKNOWN=-1;

/*addChar - a function to add nextChar to lexeme */

void addChar () {
if (lexLen <=99)
lexeme [lexLen++]=nextChar;
else printf (“Error: Lexeme is too long \n”);

/* getNonBlank - call getChar until it returns a non-whitespace character */
void getNonBlank () {

while (isspace (nextChar))
getChar () ;

ICOM 4036: Programming Languages
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Implementing the State Diagram

/*getChar - a function to get the next character of input and determine its
character class*/

void getChar () {
if (isalpha (nextChar))
charClass = LETTER;
else if (isdigit(nextChar))
charClass = DIGIT;
else
charClass = UNKNOWN

}

/*lex - a simple lexical analyzer*/

int lex () {
lexlen =0;
static int first=1l;

if (first){
getChar () ;
first=0;

}

getNonBlank () ;

switch (CharClass) {
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Implementing the State Diagram

switch (charClass) {

case LETTER:
addChar () ;
getChar () ;
while (charClass == LETTER || charClass == DIGIT) {
addChar () ;
getChar() ;
}
return lookup (lexeme) ;
break;

case DIGIT:
addChar () ;
getChar() ;
while (charClass == DIGIT) {
addChar () ;
getChar() ;
}
return INT LIT;
break;

} /*End of switch*/

} /*End of lex*/

ICOM 4036: Programming Languages
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State Diagram

- Problem: Design a state diagram to
recognize one form of the comments of C-
based programming languages, those that
begin with /* and end with */

other

/
OO O
w

other
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Example: state diagram

For-Keyword = for
Identifier = [a-z][a-z0-9]*

accept aceept
£ identifier 5  identifier ]

®

1dennﬁc (2-20-9]
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Lexical Analyzer with Lex

Lex is a domain-specific programming language for creating programs to
process streams of input characters.

A Lex program has the following form:
declarations
%%
translation rules
%%
auxiliary functions

The declarations section can contain declarations of variables, manifest
constants, and regular definitions. The declarations section can be empty.

The translationrules are each of the form pattern {action}

- Each patternis a regular expression which may use regular definitions
defined in the declarations section.

- Each action is a fragment of C-code. The braces around the action may
be omitted if the action is a single statement.
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Lexical Analyzer with Lex

a\+b matches the string a+b.

. matches any character excepta newline.

A matches the empty string at the beginning of a line.
$ matches the empty string at the end of a line.

[a-z] matches any lowercase letter between a and z.
[A-Za-z0-9] matches any alphanumeric character.

[Aabc] matches any character exceptan a, or a b, or a c.

[A0-9] matches any nonnumeric character.

a* matches a string of zero or more a's.

a+ matches a string of one or more a's.

.a? matches a string of zero or one a's.

a{2,5} matches any string consisting of two to five a's.
a/b matches an a when followed by a b.

\n matches a newline.

\t matches a tab

ICOM 4036: Programming Languages
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Example with Lex

int num_words = O,num_numbers = 0, num_lines = O;
word [A-Za-z]+

number [0-9]+

%%

{word} {+ +num_words;}

{number} {++num_numbers;}

\n {++num_lines;}

Al

%%

int main() {

yylex();
printf("# of words = %d, # of numbers = %d, # of lines

num_words, num_numbers, num_lines);
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Example with Lex

- Put lex program into a file file.l

- Compile the lex program with the
command
- lex file.l

- This command produces an output file lex.yy.c.

Compile this output file with the C
compiler and the lex library -ll

- gcc lex.yy.c -l
- The resulting a.out is the lexical processor.

ICOM 4036: Programming Languages
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The Parsing Problem

- Given an input program:

- Operates on tokens and groups them into useful
grammatical structures.

- Find all syntax errors; for each, produce an
appropriate diagnostic message and recover
quickly

- Produce the parse tree, or at least a trace of the
parse tree, for the program
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The Parsing Problem (cont.)

- Two categories of parsers

- Top down - produce the parse tree, beginning
at the root

- Order is that of a leftmost derivation
- Traces or builds the parse tree in preorder

- Bottom up - produce the parse tree, beginning
at the leaves

- Order is that of the reverse of a rightmost derivation
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The Parsing Problem (cont.)

- Top-down Parsers

- Given a sentential form, xAa , the parser must
choose the correct A-rule to get the next
sentential form in the leftmost derivation, using
only the first token produced by A

- The most common top-down parsing
algorithms:

- Recursive descent - a coded implementation
- LL parsers - table driven implementation
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The Parsing Problem (cont.)

- Bottom-up parsers

- Given a right sentential form, o, determine what
substring of a is the right-hand side of the rule
in the grammar that must be reduced to
produce the previous sentential form in the
right derivation

- The most common bottom-up parsing
algorithms are in the LR (Left-to-right,
Rightmost derivation) type.
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Recursive-Descent Parsing

- There is a subprogram for each
nonterminal in the grammar, which can
parse sentences that can be generated by
that nonterminal

- EBNF is ideally suited for being the basis for
a recursive-descent parser, because EBNF
minimizes the number of nonterminals
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Recursive-Descent Parsing (cont.)

- A grammar for simple expressions:

<expr> — <term> {(+ | -) <expr>}
<term> — <factor> {(* | /) <term>}
<factor> — id | int constant | ( <expr> )
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Recursive-Descent Parsing (cont.)

- Assume we have a lexical analyzer named
lex, wWhich puts the next token code in
nextToken

- The coding process when there is only one
RHS (Right Hand Side):

- For each terminal symbol in the RHS, compare it
with the next input token; if they match,
continue, else there is an error

- For each nonterminal symbol in the RHS, call its
associated parsing subprogram
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Recursive-Descent Parsing (cont.)

/* Function expr
Parses strings in the language
generated by the rule:
<expr> - <term> {(+ | -) <term>}
*/

void expr() {
/* Parse the first term */

term() ;

/* As long as the next token is + or -, call
lex to get the next token and parse the
next term */

while (nextToken == ADD OP ||
nextToken == SUB_OP) {
lex () ;
term() ;
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Recursive-Descent Parsing (cont.)

- A nonterminal that has more than one RHS
requires an initial process to determine
which RHS it is to parse

- The correct RHS is chosen on the basis of the
next token of input (the lookahead)

- The next token is compared with the first token
that can be generated by each RHS until a match
is found

- If no match is found, it is a syntax error
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Recursive-Descent Parsing (cont.)

/* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>)
*/
void term() {
printf ("Enter <term>\n");
/* Parse the first factor */
factor () ;
/* As long as the next token is * or /,
next token and parse the next factor */
while (nextToken == MULT OP || nextToken == DIV OP) {
lex();
factor () ;
}
printf ("Exit <term>\n");
} /* End of function term */
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Recursive-Descent Parsing (cont.)

/* Function factor
Parses strings in the language
generated by the rule:
<factor> -> id | (<expr>) */

void factor() {

/* Determine which RHS */
if (nextToken) == ID CODE || nextToken == INT CODE)

/* For the RHS id, just call lex */
lex();

/* If the RHS is (<expr>) - call lex to pass over the left parenthesis,
call expr, and check for the right parenthesis */

else if (nextToken == LP CODE) ({
lex();
expr () ;
if (nextToken == RP_CODE)
lex();
else
error () ;
} /* End of else if (nextToken == ... */
else error(); /* Neither RHS matches */
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Recursive-Descent Parsing (cont.)

Trace of the recursive descent parser for the stringa + b * ¢

Call lex /* returns a */
Enter <expr>

Enter <term>

Enter <factor>

Call lex /* returns + */
Exit <factor>

Exit <term>

Call lex /* returns b */
Enter <term>

Enter <factor>

Call lex /* returns * */
Exit <factor>

Call lex /* returns c */
Enter <factor>

Call lex /* returns end-of-input */
Exit <factor>

Exit <term>

Exit <expr>
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Bottom-up Parsing

- The Bottom-up Parsing problem is finding
the correct RHS in a right-sentential form
to reduce to get the previous right-
sentential form in the derivation

- LR Parsers

- Canonical LR (Knuth, 1965): original LR
algorithm
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Bottom-up Parsing (cont.)

- Advantages of LR parsers:

- They will work for nearly all grammars that
describe programming languages.

- They work on a larger class of grammars than
other bottom-up algorithms, but are as efficient
as any other bottom-up parser.

- The LR class of grammars is a superset of the
class parsable by LL parsers.
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Structure of An LR Parser

- An LR configuration stores the state of an LR parser

(SoX:S:X5S5... XSty @ia;+1...2,9)

Top
Parse Stack ¢ Input

So | X11$1 e | Xm i @i e |am| $

Sm aI
A Pushdown automata is a H H

deterministic finite state automaton
with the addition of a stack for a .
memory indicating which states the Parser Parsing
parser has passed through Code Table
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Bottom-up Parsing (cont.)

- LR
tab
tab

narsers are table driven, where the
e has two components, an ACTION

e and a GOTO table

- The ACTION table specifies the action of the
parser, given the parser state and the next
token

- Rows are state names; columns are terminals

- The GOTO table specifies which state to put
on top of the parse stack after a reduction

action is done

- Rows are state names; columns are nonterminals
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Bottom-up Parsing (cont.)

- Initial configuration: (Sy, a;...a,%)

- Parser actions:

- If ACTIONIS,,, a;] = Shift S, the next
configuration is:

(SoX:S1X5S5.. . X SiaiS, aj.1...a,%)
- If ACTION[S,,, a;] = Reduce A —=p and S =

GOTOIS,,.,, Al, where r = the length of B, the
next configuration is

(SoX1S1X5S5.. X Sm_/AS, aiai,q...a, )
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Bottom-up Parsing (cont.)

- Parser actions (continued):

- If ACTION[S,,, a;] = Accept, the parse is
complete and no errors were found.

- If ACTION[S,,, a;] = Error, the parser calls an
error-handling routine.
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LR Parsing Table

o v kA wWwh =
—
N2
T
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Action Goto
State id + * ( ) $ T F

0 S5 S4 2 3
1 S6 accept

2 R2 S7 R2 R2

3 R4 R4 R4 R4

4 S5 S4 2 3
5 R6 R6 R6 R6

6 S5 S4 9 3
7 S5 S4 10
8 S6 ST11

9 R1 S7 R1 R1
10 R3 | R3 R3 R3
1 R5 | R5 R5 R5
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Trace of a parse

Stack
0
0id5
OF3
0T2
0T2*7
0T2*7(4
0T2*7(4id5
0T2*7(4F3
0T2*7(4T2
0T2*7(4E8
0T2*7(4E8+6
0T2*7(4E8+6id5
0T2*7(4E8+6F3
0T2*7(4E8+6T9
0T2*7(4E8
O0T2*7(4E8)11
0T2*7F10
0T2
OE1
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Input

id * (id + id) $
*(id +id) $
*(id +id) $
*(id +id) $
(id +id) $
id+id) $

Action

Shift 5

Reduce 6 (Use GOTOI[O, F])
Reduce 4 (Use GOTO[O, T])
Shift 7

Shift 4

Shift 5

Reduce 6 (Use GOTO[4, F])
Reduce 4 (Use GOTO[4, T])
Reduce 2 (Use GOTO[4, E])
Shift 6

Shift 5

Reduce 6 (Use GOTO[6, F])
Reduce 4 (Use GOTO[6, T])
Reduce 1 (Use GOTO[4, E])
Shift 11

Reduce 5 (Use GOTO[7, F])
Reduce 3 (Use GOTOI[O, T])
Reduce 2 (Use GOTOI[O, E])
ACCEPT

93



Parsers Classification

- LL(k) Top down parser

- LL(1) are simple parsers but cannot recognize all
context free grammars

- LR(k) Bottom up parser

- LR(1) are more powerful
- LALR(T)

- Not as powerful as full LR(1) but simpler to
implement

- Yacc uses LALR(1) parse tables to construct a
restricted LR
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Recommended Links

- Parsing Simulator

- Compiler component generators
- lexical analyzer generators: lex, flex
- syntax analyzer generator: yacc, bison

- PLY (Python Lex-Yacc)

- ANTLR lexer—parser generator
- Compact Guide to Lex & Yacc
- Flex

- GNU Bison

- JavaCC
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Summary

BNF and context-free grammars are equivalent meta-
languages to describe syntax

Regular expressions and Finite Automata
Syntax analysis
- Lexical Analysis (Produce tokens)
- Parsing (Produces a parse tree)
Lexical Analyzer
Parsing
- Top-down approach
- Recursive-descent parser
- Bottom-up approach

- The LR family of shift-reduce parsers is the most
common bottom-up parsing approach
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