
Some slides adapted from Sebesta’s textbook

Dr. Wilson Rivera

ICOM 4036: Programming Languages

Electrical and Computer Engineering Department

University of Puerto Rico

Lecture 5
Concurrent Programming

ICOM 4036: Programming Languages 2

Lecture Outline

• Definitions related to concurrency

• Introduction to parallel programming
– Flynn’s Taxonomy (parallel architectures)

– Memory access models

– Parallel programming models

• Implementation (Notations) Tour
– Threading: OpenMP

– Data Parallel: CUDA

– Task Parallel: TBB

– Message Passing: MPI, Erlang

Concurrency

• Instruction level
– e.g. Pipelining, superscalar

execution, out-of-order
execution

• Statement level
– Data Oriented

• Unit level (subprograms)
– Tasks Oriented

• Heavyweight task
– Executes in its own

address space (e.g. Ada
Threads)

• Lightweight task
– All tasks run in the same

address space (e.g. Java
Threads, C# Threads)

ICOM 4036: Programming Languages 3

Figure from “An Introduction to Concurrency in Programming

Languages” by J. Sottile, Timothy G. Mattson, and Craig E

Rasmussen, 2010

Concurrency: A condition of a system in

which multiple

tasks are logically active at one time.

Parallelism: A condition of a system in which

multiple

tasks are actually active at one time.

ICOM 4036: Programming Languages 4

Intro to Parallel Programming

• Parallel computing refers to the
simultaneous use of multiple compute
resources to solve a computational
problem.

– Flynn’s Taxonomy (parallel architectures)

– Memory access models

– Parallel programming models

ICOM 4036: Programming Languages 5

Flynn's Taxonomy

SISD SIMD

MISD MIMD

 Data

In
s
tru

c
tio

n
s

ICOM 4036: Programming Languages 6

Flynn's Taxonomy

• Single Instruction, Single Data (SISD)

– A serial (non-parallel) computer where only one
instruction stream is being executed by the CPU
during a clock cycle

– Only one data stream is being used as input
during a clock cycle

ICOM 4036: Programming Languages 7

Flynn's Taxonomy

• Multiple Instruction, Single Data (MISD)

– A single data stream is fed into multiple
processing units

– Each processing unit operates on the data via
independent instruction streams.

– Non commercial examples of this type of
parallel computer architecture have ever
existed.

ICOM 4036: Programming Languages 8

Flynn's Taxonomy

• Single Instruction, Multiple Data (SIMD)
– All processing units execute the same instruction at any given

clock cycle

– Each processing unit can operate on a different data element

– This type of computer architecture is best suited for specialized
problems characterized by a high degree of regularity

• Image processing

– Processor Arrays

• Connection Machine CM-2, MasPar, ILLIAC IV

– Vector Pipelines

• IBM 9000, Cray X-MP, Cray Y-MP, Fujitsu VP, NEC SX-2, Hitachi
S820, ETA10

– Most modern computers, particularly those with graphics
processing units (GPUs) employ SIMD execution units.

ICOM 4036: Programming Languages 9

Flynn's Taxonomy

• Multiple Instruction, Multiple Data (MIMD)

– Every processor may be executing a different
instruction stream, and working with a different
data stream.

– Examples of this parallel computer architecture
include most current clusters, and multicore
computers.

• In practice MIMD architectures may also include
SIMD execution sub-components.

ICOM 4036: Programming Languages 10

Memory Access Models

• Shared memory

• Distributed memory

• Hybrid Distributed-Shared Memory

ICOM 4036: Programming Languages 11

Shared Memory

Bus Interconnect

Memory

CPU CPU CPU

L2 L2 L2

I/O

ICOM 4036: Programming Languages 12

Shared Memory

• multiple processors can operate independently but share the same

memory resources
– so that changes in a memory location effected by one processor are

visible to all other processors.

• Two main classes based upon memory access times
– Uniform Memory Access (UMA), commonly represented by Symmetric

Multiprocessor (SMP) machines, where identical processors have equal
access and access times to memory, and

– Non Uniform Memory Access (NUMA), commonly built by physically
linking two or more SMPs. In this case one SMP can directly access
memory of another SMP.

• Main disadvantage is the lack of scalability between memory and

CPUs.
– Adding more CPUs geometrically increases traffic on the shared memory

CPU path, and for cache coherent systems, it increases traffic associated
with cache and memory management

ICOM 4036: Programming Languages 13

Distributed Memory

Network I/O

CPU

L2

M

L2

CPU M

CPU

L2

M

L2

CPU M

ICOM 4036: Programming Languages 14

Distributed Memory

• Processors have their own local memory.
When a processor needs access to data in
another processor

– it is usually the task of the programmer to
explicitly define how and when data is
communicated

ICOM 4036: Programming Languages 15

Hybrid Distributed-Shared Memory

• This type of parallel computers is often
built by networking multiple SMPs.

• Each SMP knows only about its own
memory, and network communications are
required to move data from one SMP to
another.

ICOM 4036: Programming Languages 16

Parallel Programming Language Models

• Threads Model

• Data Parallel Model

• Task Parallel Model

• Message Passing Model

ICOM 4036: Programming Languages 17

Threads Model

• A single process can have multiple, concurrent execution paths
– The thread based model requires the programmer to manually manage

synchronization, load balancing, and locality, which in turn requires
detailed understanding of the underlying hardware.

– With the number of threads growing as the number of cores does,
dealing with bugs caused by deadlocks and race conditions reduces
developer productivity significantly.

• POSIX Threads
– specified by the IEEE POSIX 1003.1c standard (1995) and commonly

referred to as Pthreads,
– Library-based explicit parallelism model.

• OpenMP
– Compiler directive-based model that supports parallel programming in

C/C++ and FORTRAN.

ICOM 4036: Programming Languages 18

Data Parallel Model

• Each task works on a different partition of the same data structure
and each task performs the same operation on their partition of
data.
– On shared memory architectures, all tasks may have access to the data

structure through global memory.
– On distributed memory architectures the data structure is split up and

resides as chunks in the local memory of each task.
– Data parallel model implementations in general perform computation on

arrays of data using array operators, and communications using array
shift or rearrangement operators.

– This model is suitable for problems with static load balancing (e.g. very
regular fluid element analysis, image processing).

– It is easy to debugging, as there is only one copy of code executing in a
highly synchronized fashion.

• Implementations
– FORTRAN 90 (F90), FORTRAN 95 (F95)
– High Performance Fortran (HPF)
– RapidMind, Ct, MapReduce, and CUDA

ICOM 4036: Programming Languages 19

Task Parallel Model

• Each processor executes a different thread
or process on the same or different data,
and each thread may execute the same or
different code.

• Implementations

– Threading Building Blocks (TBB)

– Task Parallel Library (TPL)

– Intel Concurrent Collections (CnC)

ICOM 4036: Programming Languages 20

Message Passing Model

• A set of tasks use their own local memory during
computation
– Multiple tasks can reside on the same physical machine as well

across an arbitrary number of machines
– Tasks exchange data through communications by sending and

receiving messages
– Data transfer usually requires cooperative operations to be

performed by each process. For example, a send operation must
have a matching receive operation.

– From a programming perspective, message passing
implementations commonly comprise a library of subroutines
that are embedded into source code.

• Implementations
– MPI
– Erlang

ICOM 4036: Programming Languages 21

OPENMP

ICOM 4036: Programming Languages 22

OpenMP

• http://www.openmp.org
• http://www.cOMPunity.org
• Open Multi Processing

• An Application Program Interface (API) that may be used to

explicitly direct multi-threaded, shared memory parallelism
• Comprised of three primary API components:

– Compiler Directives
– Library Routines
– Environment Variables

• Portable:
– The API is specified for C/C++ and Fortran
– Multiple platforms have been implemented
– OpenMP 3.1 (2011)
– OpenMP 4.0 (coming November 2012)

http://www.openmp.org/
http://www.compunity.org/

ICOM 4036: Programming Languages 23

OpenMP

• OpenMP Directives

– Parallel construct

– Work sharing constructs

– Synchronization constructs

• Run-time Library Routines

• Environment Variables

ICOM 4036: Programming Languages 24

Parallel Construct

#include <omp.h>

main ()
{ int nthreads, tid, n;

/* Fork a team of threads giving them their own copies of variables */
#pragma omp parallel if (n>10,000) \
 private (tid)
 {

 /* Obtain and print thread id */
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 /* Only master thread does this */
 if (tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }

 }/* All threads join master thread and terminate */

}

ICOM 4036: Programming Languages 25

Parallel Construct

#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

 structured_block

Only Fortran API supports default(private)

ICOM 4036: Programming Languages 26

Parallel Construct

• When a thread reaches a PARALLEL directive, it creates a team
of threads and becomes the master of the team.

• There is an implied barrier at the end of a parallel section.
Only the master thread continues execution past this point.

• The number of threads in a parallel region is determined by
the following factors, in order of precedence:

– omp_set_num_threads() library function

– OMP_NUM_THREADS environment variable

– Implementation default

• Threads are numbered from 0 (master thread) to N-1

ICOM 4036: Programming Languages 27

Parallel Construct

• Dynamic Threads
– By default, a program with multiple parallel regions will use the same

number of threads to execute each region. This behavior can be
changed to allow the run-time system to dynamically adjust the number
of threads that are created for a given parallel section.

– Use of the omp_set_dynamic() library function
– Setting of the OMP_DYNAMIC environment variable

» setenv OMP_DYNAMIC TRUE

• Nested Parallel Regions
– A parallel region nested within another parallel region results in the

creation of a new team, consisting of one thread, by default.

• Restrictions
– A parallel region must be a structured block that does not span multiple

routines or code files
– It is illegal to branch into or out of a parallel region

ICOM 4036: Programming Languages 28

Work Sharing Constructs

• FOR

– Shares iterations of a loop across the team. Represents a type of "data parallelism".

• SECTIONS

– Breaks work into separate, discrete sections. Each section is executed by a thread.
Can be used to implement a type of "functional parallelism".

• SINGLE

– Serializes a section of code

Work Sharing: FOR Directive

double doc_product (int n, double x[], double y[])

{

 int i;

 double xdoty;

 xdoty = 0.0;

pragma omp parallel Shared (n, x, y)private (i) \

 reduction (+ : xdoty)

{

pragma omp for

 for (i = 0; i < n; i++)

 {

 xdoty = xdoty + x[i] * y[i];

 }

 return xdoty;

}

}

ICOM 4036: Programming Languages 29

ICOM 4036: Programming Languages 30

Work Sharing: FOR Directive

#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main ()
{ int i, chunk;
 float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++)

 a[i] = b[i] = i * 1.0;
 chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)

{

#pragma omp for schedule (dynamic,chunk) nowait
for (i=0; i < N; i++)
c[i] = a[i] + b[i];
} /* end of parallel section */

}

ICOM 4036: Programming Languages 31

Work Sharing: FOR Directive

#pragma omp for [clause ...]

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

nowait

for_loop

Schedule

• Static

– Distribute iterations in blocks of size "chunk" over the threads in a
round-robin fashion

– In absence of "chunk", each thread executes approx. N/P chunks for a
loop of length N and P threads

– Done at compilation time

• Dynamic

– Fixed portions of work; size is controlled by the value of chunk

– When a thread finishes, it starts on the next portion of work

– Done at run time

• Guided

– Same dynamic behavior as "dynamic", but size of the portion of work
decreases exponentially

• Runtime

– The compiler (or runtime system) decides what is best to use

ICOM 4036: Programming Languages 32

ICOM 4036: Programming Languages 33

#include <omp.h>

#define N 1000

main ()

{ int i; float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,c) private(i)

{

#pragma omp sections nowait

{

#pragma omp section

for (i=0; i < N/2; i++)

c[i] = a[i] + b[i];

#pragma omp section

for (i=N/2; i < N; i++)

c[i] = a[i] * b[i];

} /* end of sections */ }

/* end of parallel section */

}

Work Sharing: SECTIONS Directive

ICOM 4036: Programming Languages 34

#pragma omp sections [clause ...]

private (list)

firstprivate (list)

lastprivate (list)

reduction (operator: list) nowait

{

#pragma omp section

structured_block

#pragma omp section

structured_block

}

Work Sharing: SECTIONS Directive

ICOM 4036: Programming Languages 35

#pragma omp single [clause ...]

private (list)

firstprivate (list)

nowait

structured_block

Work Sharing: SINGLE Directive

ICOM 4036: Programming Languages 36

Parallel For

#pragma omp parallel for default(none) \

 shared(m,n,a,b,c) private(i,j)

 for (i=0; i<m; i++)

 {

 a[i] = 0.0;

 for (j=0; j<n; j++)

 a[i] += b[i*n+j]*c[j];

 } /*-- End of omp parallel for --*/

}

ICOM 4036: Programming Languages 37

OpenMP: Quicksort

void quick_sort(double *data, int initialIndex, int finalIndex)

{

 if(initialIndex < finalIndex)

 {

 int mid = partition_data(data, initialIndex, finalIndex);

 #pragma omp parallel sections

 {

 #pragma omp section

 { quick_sort(data,initialIndex, mid-1);

 }

 #pragma omp section

 {

 quick_sort(data, mid+1, finalIndex);

 }

 }

 }

}

ICOM 4036: Programming Languages 38

Synchronization Constructs

• MASTER Directive

• CRITICAL Directive

• BARRIER Directive

• ATOMIC Directive

• FLUSH Directive

• ORDERED Directive

ICOM 4036: Programming Languages 39

MASTER Directive

• The MASTER directive specifies a region that is to
be executed only by the master thread of the team.
All other threads on the team skip this section of
code

– There is no implied barrier associated with this directive

#pragma omp master

structured_block

ICOM 4036: Programming Languages 40

BARRIER Directive

• When a BARRIER directive is used, a thread will wait at that

point until all other threads have reached that barrier.

• Should be used If data is updated asynchronously and data
integrity is at risk

– Between parts in the code that read and write the same section
of memory

– After one iteration in a solver

• Unfortunately, barriers tend to be expensive and also may
not scale to a large number of processors. Therefore, use
them with care

#pragma omp barrier

Master and Barrier

#pragma omp parallel

{

 do_many_things();

#pragma omp master

 { exchange_boundaries(); }

#pragma omp barrier

 do_many_other_things();

}

ICOM 4036: Programming Languages 41

ICOM 4036: Programming Languages 42

CRITICAL Directive

• The CRITICAL directive specifies a region of code that must
be executed by only one thread at a time.
– If a thread is currently executing inside a CRITICAL region and

another thread reaches that CRITICAL region and attempts to
execute it, it will block until the first thread exits that CRITICAL
region.

– The optional name enables multiple different CRITICAL regions
to exist:

• Names act as global identifiers. Different CRITICAL regions with
the same name are treated as the same region.

• All CRITICAL sections which are unnamed, are treated as the
same section.

#pragma omp critical [name]

 structured_block

ICOM 4036: Programming Languages 43

OpenMP example: Critical

#pragma omp parallel
 {
 #pragma omp single
 printf("Number of threads is %d\n",omp_get_num_threads());
 }

 sum = SUM_INIT;
 printf("Value of sum prior to parallel region: %d\n",sum);

 #pragma omp parallel default(none) shared(n,a,sum) \
 private(TID,sumLocal)
 {
 TID = omp_get_thread_num();
 sumLocal = 0;

 #pragma omp for
 for (i=0; i<n; i++)
 sumLocal += a[i];

 #pragma omp critical (update_sum)
 {
 sum += sumLocal;
 printf("TID=%d: sumLocal = %d sum = %d\n",TID,sumLocal,sum);
 }
 } /*-- End of parallel region --*/

Tasking in OpenMP

my_pointer = listhead;

#pragma omp parallel

{ #pragma omp single nowait

 { while(my_pointer) {

 #pragma omp task firstprivate(my_pointer)

 {

 do_independent_work (my_pointer);

 }

 my_pointer = my_pointer->next ;}

 } // End of single - no implied barrier (nowait)

} // End of parallel region - implied barrier

ICOM 4036: Programming Languages 44

Tasking in OpenMP

int main(int argc, char *argv[]) {

#pragma omp parallel

{

 #pragma omp single

 {

 #pragma omp task

 {printf("Hello ");}

 #pragma omp task

 {printf("World ");}

 #pragma omp taskwait

 printf(“\nThank You “);

 }

} // End of parallel region

}

ICOM 4036: Programming Languages 45

ICOM 4036: Programming Languages 46

Run-Time Library Routines

• OMP_SET_NUM_THREADS
• OMP_GET_NUM_THREADS
• OMP_GET_MAX_THREADS
• OMP_GET_THREAD_NUM
• OMP_GET_NUM_PROCS
• OMP_IN_PARALLEL
• OMP_SET_DYNAMIC
• OMP_GET_DYNAMIC
• OMP_SET_NESTED
• OMP_GET_NESTED
• OMP_INIT_LOCK
• OMP_DESTROY_LOCK
• OMP_SET_LOCK
• OMP_UNSET_LOCK
• OMP_TEST_LOCK
• OMP_GET_WTIME
• OMP_GET_WTICK

ICOM 4036: Programming Languages 47

OMP_SET_DYNAMIC

void omp_set_dynamic(int dynamic_threads)

• Enables or disables dynamic adjustment (by the
run time system) of the number of threads
available for execution of parallel regions.

• The default setting is implementation dependent.

• Must be called from a serial section of the
program.

ICOM 4036: Programming Languages 48

OMP_SET_NUM_THREADS

void omp_set_num_threads(int num_threads)

• The dynamic threads mechanism modifies the

effect of this routine.
– Enabled: specifies the maximum number of threads that

can be used for any parallel region by the dynamic
threads mechanism.

– Disabled: specifies exact number of threads to use until
next call to this routine.

• This routine can only be called from the serial
portions of the code

ICOM 4036: Programming Languages 49

OMP_GET_WTIME

double omp_get_wtime(void)

• Provides a portable wall clock timing routine
• Returns a double-precision floating point value

equal to the number of elapsed seconds since
some point in the past.
– Usually used in "pairs" with the value of the first call

subtracted from the value of the second call to obtain the
elapsed time for a block of code.

• Designed to be "per thread" times, and therefore
may not be globally consistent across all threads in
a team
– depends upon what a thread is doing compared to other

threads.

ICOM 4036: Programming Languages 50

Environment Variables

• OMP_SCHEDULE
– Applies only to for and parallel for (C/C++) directives which have their

schedule clause set to RUNTIME.
– The value of this variable determines how iterations of the loop are

scheduled on processors.
• setenv OMP_SCHEDULE "guided, 4"
• setenv OMP_SCHEDULE "dynamic"

• OMP_NUM_THREADS

– Sets the maximum number of threads to use during execution.
• setenv OMP_NUM_THREADS 8

• OMP_DYNAMIC

– Enables or disables dynamic adjustment of the number of threads
available for execution of parallel regions.

– Valid values are TRUE or FALSE.
• setenv OMP_DYNAMIC TRUE

ICOM 4036: Programming Languages 51

Performance considerations

• Be aware of the Amdahl’s law
– Minimize serial code
– Remove dependencies among iterations

• Balance the load
– Experiment with using SCHEDULE clause

• Be aware of directives cost
– Parallelize outer loops
– Minimize the number of directives
– Minimize synchronization – minimize the use of BARRIER,

CRITICAL, ORDERED

– Consider using NOWAIT clause of OMP DO when enclosing several
loops inside one PARALLEL region.

– Merge loops to reduce synchronization cost

• Reduce false sharing
– Use private variables

• Try task level parallelism

ICOM 4036: Programming Languages 52

CUDA

CUDA

• Compute Unified
Device Architecture

– Designed and developed
by NVIDIA

– Data parallel
programming interface
to GPUs

• Requires an NVIDIA
GPU (GeForce, Tesla,
Quadro)

ICOM 4036: Programming Languages 53

Eugene d’Eon, David Luebke, Eric Enderton

In Proc. EGSR 2007 and GPU Gems 3

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming
Languages

OpenACC
Directives

Maximum

Flexibility

Easily Accelerate

Applications

© NVIDIA 2013

GPU Programming Languages

OpenACC, CUDA Fortran Fortran

OpenACC, CUDA C C

Thrust, CUDA C++ C++

PyCUDA, Copperhead Python

Alea.cuBase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

© NVIDIA 2013

GPU Threads

• GPU threads are extremely lightweight

– Very little creation overhead

• GPU needs 1000s of threads for full
efficiency

– Multi-core CPU needs only a few

ICOM 4036: Programming Languages 56

ICOM 4036: Programming Languages 57

Computational Grid

• The computational grid
consist of a grid of thread
blocks

• All blocks execute the same
program (kernel). Only one
kernel at a time.

• A thread block is a group of
threads that can cooperate
with each other by:
– Synchronizing their execution

• For hazard-free shared memory
accesses

– Efficiently sharing data
through a low latency shared
memory

– Two threads from two
different blocks cannot
cooperate

CUDA Parallel Threads and Memory

Thread

Per-thread Private
Local Memory

Block

Per-block
Shared

Memory

Grid 0

. . .

Per-app

Device
Global

Memory

. . .

Grid 1

__device__ float GlobalVar;

__shared__ float SharedVar;
 float LocalVar;

Sequence

Registers

CUDA kernel maps to Grid of Blocks

GPU

S
M

e
m

S
M

e
m

S
M

e
m

PCIe
Bridge

Host
Memory

CPU

Cache

Device Memory

Cache

. . .

Host Thread Grid of Thread Blocks

ICOM 4036: Programming Languages 60

Kernel Function call

• kernel<<<grid, block, stream, shared_mem>>>();

– Grid: Grid dimension (up to 2D)

– Block: Block dimension (up to 3D)

– Stream: stream ID (optional)

– Shared_mem: shared memory size (optional)

__global__ void filter(int *in, int *out);

dim3 grid(16, 16);

dim3 block (16, 16) ;

filter <<< grid, block, 0, 0 >>> (in, out);

\\ filter <<< grid, block >>> (in, out);

ICOM 4036: Programming Languages 61

CUDA Example: Add_matrix

// Set grid size

const int N = 1024;

const int blocksize = 16;

// Compute kernel

__global__

void add_matrix(float* a, float *b, float *c, int N)

{

 // threadIdx.x is a built-in variable provided by CUDA at runtime
int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

int index = i + j*N;

if (i < N && j < N)

 c[index] = a[index] + b[index];

}

ICOM 4036: Programming Languages 62

CUDA Example: Add_matrix

int main() {

 \\ CPU memory allocation

float *a = new float[N*N];

float *b = new float[N*N];

float *c = new float[N*N];

for (int i = 0; i < N*N; ++i) {

 a[i] = 1.0f; b[i] = 3.5f; }

 \\GPU memory allocation

float *ad, *bd, *cd;

const int size = N*N*sizeof(float);

cudaMalloc((void**)&ad, size);

cudaMalloc((void**)&bd, size);

cudaMalloc((void**)&cd, size);

ICOM 4036: Programming Languages 63

CUDA Example: Add_matrix

\\ copy data to GPU
cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice);

\\ execute kernel
dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

\\ copy result back to CPU
cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);

\\ clean up and return
cudaFree(ad); cudaFree(bd); cudaFree(cd);
delete[] a; delete[] b; delete[] c;
return EXIT_SUCCESS;

}

ICOM 4036: Programming Languages 64

NVCC Compiler

• CUDA kernels are typically stored in files
ending with .cu

• NVCC uses the host compiler (CL/G++) to
compile CPU code

• NVCC automatically handles #include's and
linking

>> nvcc -o executable program.cu

>> ./executable

ICOM 4036: Programming Languages 65

Memory Model

• Registers
– Per thread, Read-Write

• Local memory
– Per thread, Read-Write

• Shared memory
– Per block Read-Write For

sharing data within a block

• Global memory
– Per grid Read-Write Not

cached

• Constant memory
– Per grid Read-only Cached

• Texture memory
– Per grid Read-only

Spatially cached

CUDA Type Qualifiers

Function type
qualifiers

__device__
• Executed on the device
• Callable from the device

only

__global__
• Executed on the device
• Callable from the host

only

__host__
• Executed on the host
• Callable from the host

only
• Default type if

unspecified

Variable type qualifiers

__device__

• global memory space

• Is accessible from all the
threads within the grid

__constant__

• constant memory space

• Is accessible from all the
threads within the grid

__shared__

• space of a thread block

• Is only accessible from all
the threads within the
block

CUDA Variable Type Qualifiers

• “automatic” scalar variables without qualifier reside
in a register

– compiler will spill to thread local memory

• “automatic” array variables without qualifier reside
in thread-local memory

Variable declaration Memory Scope Lifetime

 int var; register thread thread

 int array_var[10]; local thread thread

__shared__ int shared_var; shared block block

__device__ int global_var; global grid application

__constant__ int constant_var; constant grid application

CUDA Variable Type Performance

• scalar variables reside in fast, on-chip registers

• shared variables reside in fast, on-chip memories

• thread-local arrays & global variables reside in uncached off-
chip memory

• constant variables reside in cached off-chip memory

Variable declaration Memory Penalty

 int var; register 1x

 int array_var[10]; local 100x

__shared__ int shared_var; shared 1x

__device__ int global_var; global 100x

__constant__ int constant_var; constant 1x

Example – shared variables

// Adjacent Difference application:

// compute result[i] = input[i] – input[i-1]

__global__ void adj_diff_naive(int *result, int *input)

{

 // compute this thread’s global index

 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0)

 {

 // each thread loads two elements from global memory

 int x_i = input[i];

 int x_i_minus_one = input[i-1];

 result[i] = x_i – x_i_minus_one;

 }

}

Example – shared variables

// optimized version of adjacent difference

__global__ void adj_diff(int *result, int *input)

{

 // shorthand for threadIdx.x

 int tx = threadIdx.x;

 // allocate a __shared__ array, one element per thread

 __shared__ int s_data[BLOCK_SIZE];

 // each thread reads one element to s_data

 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 s_data[tx] = input[i];

 if(tx > 0)

 result[i] = s_data[tx] – s_data[tx–1];

 else if(i > 0)

 {

 // handle thread block boundary

 result[i] = s_data[tx] – input[i-1];

 }

__syncthreads();

}

CUDA Timer

int main()

{ float myTime;

 cudaEvent_T myTimerStart, myTimerStop;

 cudaEventCreate(&myTimerStart);

 cudaEventCreate(&myTimerStop);

 cudaEventRecord(myTimerStart, 0);

 // task to be timed

 cudaEventRecord(myTimerStop, 0);

 cudaEventSynchronize(myTimerStop);

 cudaEventElapsedTime(&myTime, myTimerStart,

 myTimerStop); }

ICOM 4036: Programming Languages 71

ICOM 4036: Programming Languages 72

TBB

ICOM 4036: Programming Languages 73

TBB: Threading Building Blocks

• http://threadingbuildingblocks.org

• Task-based parallelism

• C++ Template library

– abstracts platform details and threading
mechanisms for scalability and performance

– TBB's task manager

– Scalable memory allocator

– Concurrent container

– Generic Parallel Algorithms

http://threadingbuildingblocks.org/

ICOM 4036: Programming Languages 74

TBB

• Tasks are light-weight entities at user-level

• TBB parallel algorithms map tasks onto threads
automatically

– Task scheduler manages the thread pool

• Scheduler is unfair to favor tasks that have been most
recent in the cache

– Task scheduler is designed to address common
performance issues of parallel programming with native
threads

• Fair scheduling Non-preemptive unfair scheduling

• High overhead Programmer specifies tasks, not threads

• Load imbalance Work-stealing balances load

ICOM 4036: Programming Languages 75

TBB

• TBB is not intended for

– I/O bound processing

– Real-time processing

• Direct use only from C++

• Distributed memory not supported

TBB versus OpenMP

• TBB provides acceptable scalability for
multi-core platforms

– TBB has been designed to be more conducive to
application parallelization on client platforms
such as laptops and desktops

– TBB goes beyond data parallelism to be suitable
for programs with nested parallelism, irregular
parallelism and task parallelism.

• OpenMP and MPI continue to be good
choices in High Performance Computing
applications

ICOM 4036: Programming Languages 76

ICOM 4036: Programming Languages 77

TBB Modules

ICOM 4036: Programming Languages 78

TBB Modules

ICOM 4036: Programming Languages 79

TBB example

#include “tbb/task_scheduler_int.h”

#include “tbb/blocked_range.h”

#include “tbb/parallel_for.h”

using namespace tbb;

int main(int argc, char *argv[])

{

 task_scheduler_init init;

 parallel_change_array();

}

ICOM 4036: Programming Languages 80

TBB example: Parallel_for

void parallel_change_array()

{

 parallel for (blocked_range <int> (0, list_count),

 [=](const blocked_range <int> & r)

 {

 for (int i=r.begin(); i< r.end(); i++)

 {

 a[i] *=2;

 }

 }

);

}

TBB Example: Time

#include <iostream>

#include "tbb/task_scheduler_init.h"

#include "tbb/parallel_for.h"

#include "tbb/blocked_range.h"

#include "tbb/tick_count.h"

using namespace tbb;

using namespace std;

class vector_mult{

 double *const v1, *const v2; double *v3;

public:

 vector_mult(double *vec1, double *vec2, double *vec3)

 : v1(vec1), v2(vec2), v3(vec3) { }

 void operator() (const blocked_range<size_t> &r) const {

 for(size_t i=r.begin(); i!=r.end(); i++)

 v3[i] = v1[i] * v2[i];

 }

};

ICOM 4036: Programming Languages 81

TBB Example: Time

const size_t vec_size = 1000000;

int main(int argc, char* argv[])

{

 // allocate storage for vectors

 double *v1, *v2, *v3;

 v1 = (double*)malloc(vec_size*sizeof(double));

 v2 = (double*)malloc(vec_size*sizeof(double));

 v3 = (double*)malloc(vec_size*sizeof(double));

 for(size_t i=0; i<vec_size; i++) { v1[i] = v2[i] = v3[i] = i; }

 task_scheduler_init init;

 tick_count parallel_start = tick_count::now();

 parallel_for(blocked_range<size_t>(0,vec_size,1000),

 vector_mult(v1,v2,v3));

 tick_count parallel_end = tick_count::now();

 return 0;

}
ICOM 4036: Programming Languages 82

TBB Example: Dot Product

#include <iostream>

#include "tbb/task_scheduler_init.h"

#include "tbb/parallel_reduce.h"

#include "tbb/blocked_range.h"

using namespace tbb;

using namespace std;

class vector_dot_prod {

 double *const v1, *const v2;

public:

 double result;

 // constructor copies the arguments into local storage

 vector_dot_prod(double *vec1, double *vec2)

 : v1(vec1), v2(vec2), result(0) { }

 // splitting constructor

 vector_dot_prod(vector_dot_prod &vdp, split)

 : v1(vdp.v1), v2(vdp.v2), result(0) { }

 // overload () so it does a dot product

 void operator() (const blocked_range<size_t> &r) {

 for(size_t i=r.begin(); i!=r.end(); i++)

 result += v1[i] * v2[i];

 }

 // join method adds partial results

 void join(vector_dot_prod &v) { result += v.result; }

};

ICOM 4036: Programming Languages 83

TBB Example: Dot Product

int main(int argc, char* argv[])

{

 // allocate storage for vectors

 double *v1, *v2, result;

 v1 = (double*)malloc(vec_size*sizeof(double));

 v2 = (double*)malloc(vec_size*sizeof(double));

 // dot-prod the vectors in parallel

 task_scheduler_init init;

 vector_dot_prod v(v1,v2);

 parallel_reduce(blocked_range<size_t>(0,vec_size,1000), v);

 // print the result to make sure it is correct

 cout << "Parallel dot product of the two vectors is " << v.result <<

endl;

 return 0;

}

ICOM 4036: Programming Languages 84

ICOM 4036: Programming Languages 85

MPI

ICOM 4036: Programming Languages 86

Topic Overview

• Message Passing Standard

• Point-to-point Communication

• Collective Communication

ICOM 4036: Programming Languages 87

The MPI Process

• Development began in early 1992

• Open process/Broad participation
– IBM,Intel, TMC, Meiko, Cray, Convex, Ncube

– PVM, p4, Express, Linda, …

– Laboratories, Universities, Government

• Final version of draft in May 1994

• Public and vendor implementations are now widely
available

• MPI 2.0 release in 1997
– Parallel I/O

– Remote memory operation (One sided)

• MPI 3.0 current effort

ICOM 4036: Programming Languages 88

Compiling and Running MPI

• mpicc –o executable source.c –libraryname

• mpirun –np 16 executable

• Open source: MPICH, OpenMPI

ICOM 4036: Programming Languages 89

Skeleton MPI Program

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 printf("I am %d of %d\n", rank, size);

 MPI_Finalize();

 return 0;

}

Point-to-Point Communication

Blocking

Send

Non-Blocking

Send

Blocking

Receive

Non-Blocking

Receive

Standard

Mode

Ready

Mode

Synchronous

Mode

Buffered

Mode

Send returns without

guaranteeing the data to be

sent has left

Upon return from the receive routine

the status of the data buffer is

undetermined The receive does not return

until the data to be sent has

entered

Send does not return until the

data to be sent has left

ICOM 4036: Programming Languages 91

Message Passing
#include <stdio.h>

#include "mpi.h

int main(int argc,char *argv[])

{

 int myid, numprocs, tag,source,destination,count, buffer;

 MPI_Status status;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 tag=1234; source=0; destination=1; count=1;

 if(myid == source){

 buffer=5678;

 MPI_Send(&buffer,count,MPI_INT,destination,tag,MPI_COMM_WORLD);

 printf("processor %d sent %d\n",myid,buffer);

 }

 if(myid == destination){

 MPI_Recv(&buffer,count,MPI_INT,source,tag,MPI_COMM_WORLD,&status);

 printf("processor %d got %d\n",myid,buffer);

 }

 MPI_Finalize();

}

ICOM 4036: Programming Languages 92

Message Passing

 MPI_Send(& buf, count, datatype, dest,

 tag, comm)

– buf is the address of the data to be sent

– count is the number of elements of the MPI datatype which
buf contains

– datatype is the MPI datatype

– dest is the destination process for the message. This is
specified by the rank of the destination within the group
associated with the communicator comm

– tag is a marker used by the sender to distinguish between
different types of messages

– comm is the communicator shared by the sender and the
receiver

ICOM 4036: Programming Languages 93

Datatypes in MPI

MPI Datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED_INT unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

ICOM 4036: Programming Languages 94

Blocking Communication

• Blocking send will send message and return

– Does not mean that message has been received, just that process free to
move on without adversely affecting message.

• Four blocking point-to-point modes depending on when a send
operation is initiated or completed

– Standard

• A send may be initiated even if a matching receive has not been
initiated

– Ready

• A send can be initiated only if a matching receive has been
initiated

– Synchronous

• A send will not complete until message deliver is guaranteed.

– Buffered

• Completion is always independent on matching receive. The
message is buffered to ensure this.

ICOM 4036: Programming Languages 95

Standard Send (MPI_Send)

• It is up to MPI to decide whether outgoing messages will be
buffered.

• Completes once the message has been sent, which may or may not
imply that the message has arrived at its destination

• Can be started whether or not a matching receive has been posted.
It may complete before a matching receive is posted.

• Has non-local completion semantics, since successful completion of
the send operation may depend on the occurrence of a matching
receive.

ICOM 4036: Programming Languages 96

Buffered Send (MPI_Bsend)

• Can be started whether or not a matching receive has been posted.
It may complete before a matching receive is posted.

• Has local completion semantics: its completion does not depend on
the occurrence of a matching receive.

• In order to complete the operation, it may be necessary to buffer
the outgoing message locally. For that purpose, buffer space is

provided by the application.

ICOM 4036: Programming Languages 97

Synchronous Send (MPI_Ssend)

• Can be started whether or not a matching receive was posted

• Will complete successfully only if a matching receive is posted, and
the receive operation has started to receive the message sent by the
synchronous send.

• Provides synchronous communication semantics: a communication
does not complete at either end before both processes rendezvous
at the communication.

ICOM 4036: Programming Languages 98

Ready Send (MPI_Rsend)

• Completes immediately

• Can be started only if the matching receive has already been
posted.

• Saves on overhead by avoiding handshaking and buffering

Non Blocking Communication

• To overlap communication with computation, MPI
provides a pair of functions for performing non-
blocking send and receive operations (“I” stands
for “Immediate”)

– MPI_Isend() will return “immediately” even before source
location is safe to be altered
• int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int

dest, int tag, MPI_Comm comm, MPI_Request *request)

– MPI_Irecv() will return even if no message to accept
• int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int

source, int tag, MPI_Comm comm, MPI_Request *request)

ICOM 4036: Programming Languages 99

Non Blocking Communication

• These operations return before the
operations have been completed.

• Function MPI_Test tests whether or not the
non- blocking send or receive operation
identified by its request has finished.

– int MPI_Test(MPI_Request *request, int

*flag, MPI_Status *status)

• MPI_Wait waits for the operation to
complete.

– int MPI_Wait(MPI_Request *request,

MPI_Status *status)

 ICOM 4036: Programming Languages 100

ICOM 4036: Programming Languages 101

Performance of Point-to-Point
Routines

Non-blocking operations

perform best

Performance gains depend

upon message size

The greatest gains occur

 with smaller message sizes

ICOM 4036: Programming Languages 102

Collective Communication

• Point-to-point communications involve
pairs of processes.

• Many message passing systems provide
operations which allow larger numbers of
processes to participate

– Broadcast

– Scatter

– Gather

– Reduce

ICOM 4036: Programming Languages 103

Broadcast

MPI_Bcast(&buffer, count, datatype, root,

communicator);

• One node (root) sends a message all others
receive the message

ICOM 4036: Programming Languages 104

Broadcast

#include <stdio.h>

#include "mpi.h"

#include <math.h>

int main(argc,argv)

int argc;

char *argv[];

{

 int i,myid, numprocs;

 int source,count;

 int buffer[4];

 MPI_Status status;

 MPI_Request request;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 source=0;

 count=4;

 if(myid == source){

 for(i=0;i<count;i++)

 buffer[i]=i;

 }

 MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);

 for(i=0;i<count;i++)

 printf("%d ",buffer[i]);

 printf("\n");

 MPI_Finalize();

}

ICOM 4036: Programming Languages 105

Scatter

• Similar to Broadcast but sends a section of an array to each
processors

• int MPI_Scatter(&sendbuf, sendcnts, sendtype,

&recvbuf, recvcnts, recvtype, root, comm);

– Sendbuf is an array of size (number processors*sendcnts)

– Sendcnts number of elements sent to each processor

– Recvcnts number of elements obtained from the root processor

– Recvbuf elements obtained from the root processor, may be an
array

ICOM 4036: Programming Languages 106

Gather

• Used to collect data from all processors to the
root, inverse of scatter

• Data is collected into an array on root processor

• int MPI_Gather(&sendbuf,sendcnts,

sendtype, &recvbuf,

recvcnts,recvtype,root, comm)

– Sendcnts # of elements sent from each processor

– Sendbuf is an array of size sendcnts

– Recvcnts # of elements obtained from each processor

– Recvbuf of size Recvcnts*number of processors

ICOM 4036: Programming Languages 107

Scatter/Gather

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

int numnodes,myid,mpi_err;

#define mpi_root 0

int main(int argc,char *argv[])

{

 int *myray,*send_ray,*back_ray;

 int count;

 int size,mysize,i,k,j,total;

 MPI_Init(argc,argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numnodes);

 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

/* each processor will get count elements from the root */

 count=4;

 myray=(int*)malloc(count*sizeof(int));

/* create the data to be sent on the root */

 if(myid == mpi_root){

 size=count*numnodes;

 send_ray=(int*)malloc(size*sizeof(int));

 back_ray=(int*)malloc(numnodes*sizeof(int));

 for(i=0;i<size;i++)

 send_ray[i]=i;

 }

ICOM 4036: Programming Languages 108

Scatter/Gather (CONT….)

/* send different data to each processor */

 MPI_Scatter(send_ray, count, MPI_INT, myray, count, MPI_INT,

 mpi_root, MPI_COMM_WORLD);

/* each processor does a local sum */

 total=0;

 for(i=0;i<count;i++)

 total=total+myray[i];

 printf("myid= %d total= %d\n ",myid,total);

/* send the local sums back to the root */

 MPI_Gather(&total,1, MPI_INT,back_ray, 1, MPI_INT,

 mpi_root, MPI_COMM_WORLD);

/* the root prints the global sum */

 if(myid == mpi_root){

 total=0;

 for(i=0;i<numnodes;i++)

 total=total+back_ray[i];

 printf("results from all processors= %d \n ",total);

 }

 mpi_err = MPI_Finalize();

}

ICOM 4036: Programming Languages 109

Reduce

• Used to combine partial results from all processors. Result
returned to root processor

• int MPI_Reduce(&sendbuf, &recvbuf, count,

datatype, operation,root, communicator)

– Operation is a type of mathematical operation. Several
types of operations available

 MPI_MAX Maximum

 MPI_MIN Minimum

 MPI_PROD Product

 MPI_SUM Sum

 MPI_LAND Logical and

 MPI_LOR Logical or

 MPI_LXOR Logical exclusive or

 MPI_BAND Bitwise and

 MPI_BOR Bitwise or

 MPI_BXOR Bitwise exclusive or

 MPI_MAXLOC Maximum value and location

 MPI_MINLOC Minimum value and location

ICOM 4036: Programming Languages 110

Scatter/Reduce

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

int numnodes,myid,mpi_err;

#define mpi_root 0

void init_it(int *argc, char ***argv);

void init_it(int *argc, char ***argv) {

 mpi_err = MPI_Init(argc,argv);

 mpi_err = MPI_Comm_size(MPI_COMM_WORLD, &numnodes);

 mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid);

}

int main(int argc,char *argv[]){

 int *myray,*send_ray,*back_ray;

 int count;

 int size,mysize,i,k,j,total,gtotal;

 init_it(&argc,&argv);

/* each processor will get count elements from the root */

 count=4;

 myray=(int*)malloc(count*sizeof(int));

/* create the data to be sent on the root */

 if(myid == mpi_root){

 size=count*numnodes;

 send_ray=(int*)malloc(size*sizeof(int));

 back_ray=(int*)malloc(numnodes*sizeof(int));

 for(i=0;i<size;i++)

 send_ray[i]=i;

 }

ICOM 4036: Programming Languages 111

Scatter/Reduce (cont …)

/* send different data to each processor */

 MPI_Scatter(send_ray, count, MPI_INT, myray, count,

 MPI_INT, mpi_root, MPI_COMM_WORLD);

/* each processor does a local sum */

 total=0;

 for(i=0;i<count;i++)

 total=total+myray[i];

 printf("myid= %d total= %d\n ",myid,total);

/* send the local sums back to the root */

 MPI_Reduce(&total, >otal,1, MPI_INT,

 MPI_SUM, mpi_root, MPI_COMM_WORLD);

/* the root prints the global sum */

 if(myid == mpi_root){

 printf("results from all processors= %d \n ",gtotal);

 }

 mpi_err = MPI_Finalize();

}

MPI + OpenMP: Threads per process

#include <omp.h>

#include <mpi.h>

#include <stdio.h>

int main (int argc, char *argv[]){

 int p, myrank, c;

 MPI_Init(&argc, &argv);

 #pragma omp parallel reduction(+:c)

 {

 c=get_number_of_threads();

 }

 printf(“%d\n”, c);

MPI_Finalize();

return 0;

}

ICOM 4036: Programming Languages 112

The Future of MPI

Source: Kathy Jelick,

UCB

MPICH2 Multicore Optimizations

• Using MPI on multicore

– One MPI process per core – fast
communication (214 ns latency)

– Multithreaded – Hybrid model with OpenMP,
UPC, pthreads

• Nemesis: New “multi-method” communication
subsystem for MPICH2

– uses lock-free queues

– One receive queue per process

– Implemented using atomic assembly instructions: no
lock overhead

– Optimized to reduce cache misses

Multithreaded MPI Programming

• Pros

– Hybrid programming model

– Use shared-memory algorithms where appropriate

– One copy of large array shared by all threads

• Cons

– In general threaded programming can be difficult to
write, debug and verify (e.g., using pthreads)

• OpenMP and UPC make threaded programming
easier

– Language constructs to parallelize loops, etc.

MPI Supported Thread Levels

• MPI_THREAD_SINGLE

– Only one user thread is allowed

• MPI_THREAD_FUNNELED

– May have one or more threads, but only the “main” thread may
make MPI calls

• MPI_THREAD_SERIALIZED

– May have one or more threads, but only one thread can make
MPI calls at a time. It is the application developer’s
responsibility to guarantee this.

• MPI_THREAD_MULTIPLE

– May have one or more threads. Any thread can make MPI calls
at any time (with certain conditions).

• MPICH2 supports MPI_THREAD_MULTIPLE

Using Multiple Threads in MPI

• The main thread must call MPI_Init_thread()

– App requests a thread level

– MPI returns the thread level actually provided

– These values need not be the same on every process

– Hint: Request only the level you need to avoid unnecessary
overhead for higher thread levels.

• MPI_Init_thread()

– Called in place of MPI_Init()

– Only the main thread should call this

– The main thread (and only the main thread) must call
MPI_Finalize

• there is no MPI_Finalize_thread()

• MPI does not provide routines to create threads

– That’s left to the user

• E.g., use pthreads OpenMP, etc

ICOM 4036: Programming Languages 118

Summary

• Definitions related to concurrency

• Introduction to parallel programming
– Flynn’s Taxonomy (parallel architectures)

– Memory access models

– Parallel programming models

• Implementation Tour
– Threads: OpenMP

– Data Parallel: CUDA

– Task Parallel: TBB

– Message Passing: MPI

