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Lecture Outline 

• Definitions related to concurrency 

• Introduction to parallel programming 
– Flynn’s Taxonomy (parallel architectures) 

– Memory access models 

– Parallel programming models 

• Implementation (Notations) Tour 
– Threading: OpenMP  

– Data Parallel: CUDA 

– Task Parallel: TBB 

– Message Passing: MPI, Erlang 



Concurrency 

• Instruction level 
– e.g. Pipelining, superscalar 

execution, out-of-order 
execution 

• Statement level 
– Data Oriented 

• Unit level (subprograms) 
– Tasks Oriented 

• Heavyweight task 
– Executes in its own 

address space (e.g. Ada 
Threads) 

• Lightweight task 
– All tasks run in the same 

address space (e.g. Java 
Threads,     C# Threads) 
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Figure from “An Introduction to Concurrency in Programming 

Languages” by J. Sottile, Timothy G. Mattson, and Craig E 

Rasmussen, 2010 

Concurrency: A condition of a system in 

which multiple 

tasks are logically active at one time. 

 

Parallelism: A condition of a system in which 

multiple 

tasks are actually active at one time. 
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Intro to Parallel Programming 

• Parallel computing refers to the 
simultaneous use of multiple compute 
resources to solve a computational 
problem. 

– Flynn’s Taxonomy (parallel architectures) 

– Memory access models 

– Parallel programming models 

 

 



ICOM 4036: Programming Languages 5 
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Flynn's Taxonomy 

•  Single Instruction, Single Data (SISD) 

– A serial (non-parallel) computer where only one 
instruction stream is being executed by the CPU 
during a clock cycle 

– Only one data stream is being used as input 
during a clock cycle 
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Flynn's Taxonomy 

• Multiple Instruction, Single Data (MISD) 

–  A single data stream is fed into multiple 
processing units 

– Each processing unit operates on the data via 
independent instruction streams.  

– Non commercial examples of this type of 
parallel computer architecture have ever 
existed.  
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Flynn's Taxonomy 

  

• Single Instruction, Multiple Data (SIMD) 
– All processing units execute the same instruction at any given 

clock cycle 

– Each processing unit can operate on a different data element 

– This type of computer architecture is best suited for specialized 
problems characterized by a high degree of regularity  

• Image processing 

– Processor Arrays  

• Connection Machine CM-2, MasPar, ILLIAC IV 

– Vector Pipelines  

• IBM 9000, Cray X-MP, Cray Y-MP, Fujitsu VP, NEC SX-2, Hitachi 
S820, ETA10 

–  Most modern computers, particularly those with graphics 
processing units (GPUs) employ SIMD execution units. 
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Flynn's Taxonomy 

• Multiple Instruction, Multiple Data (MIMD) 

– Every processor may be executing a different 
instruction stream, and working with a different 
data stream.  

– Examples of this parallel computer architecture 
include most current clusters, and multicore 
computers.  

• In practice MIMD architectures may also include 
SIMD execution sub-components.  
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Memory Access Models 

• Shared memory 

• Distributed memory 

• Hybrid Distributed-Shared Memory 
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Shared Memory 

 
• multiple processors can operate independently but share the same 

memory resources  
– so that changes in a memory location effected by one processor are 

visible to all other processors.   
 

• Two main classes based upon memory access times 
– Uniform Memory Access (UMA), commonly represented by Symmetric 

Multiprocessor (SMP) machines, where identical processors have equal 
access and access times to memory, and  

– Non Uniform Memory Access (NUMA), commonly built by physically 
linking two or more SMPs. In this case one SMP can directly access 
memory of another SMP.  

  
• Main disadvantage is the lack of scalability between memory and 

CPUs.  
– Adding more CPUs geometrically increases traffic on the shared memory 

CPU path, and for cache coherent systems, it increases traffic associated 
with cache and memory management 
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Distributed Memory 
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Distributed Memory 

• Processors have their own local memory. 
When a processor needs access to data in 
another processor 

– it is usually the task of the programmer to 
explicitly define how and when data is 
communicated 
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Hybrid Distributed-Shared Memory 

• This type of parallel computers is often 
built by networking multiple SMPs.  

• Each SMP knows only about its own 
memory, and network communications are 
required to move data from one SMP to 
another.  
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Parallel Programming Language Models 

• Threads Model 

• Data Parallel Model 

• Task Parallel Model 

• Message Passing Model 
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Threads Model 

• A single process can have multiple, concurrent execution paths 
– The thread based model requires the programmer to manually manage 

synchronization, load balancing, and locality, which in turn requires 
detailed understanding of the underlying hardware.  

– With the number of threads growing as the number of cores does, 
dealing with bugs caused by deadlocks and race conditions reduces 
developer productivity significantly. 

 

• POSIX Threads 
– specified by the IEEE POSIX 1003.1c standard (1995) and commonly 

referred to as Pthreads,  
– Library-based explicit parallelism model.  

 

• OpenMP 
– Compiler directive-based model that supports parallel programming in 

C/C++ and FORTRAN.   
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Data Parallel Model 

• Each task works on a different partition of the same data structure 
and each task performs the same operation on their partition of 
data.  
– On shared memory architectures, all tasks may have access to the data 

structure through global memory.  
– On distributed memory architectures the data structure is split up and 

resides as chunks in the local memory of each task.  
– Data parallel model implementations in general perform computation on 

arrays of data using array operators, and communications using array 
shift or rearrangement operators.  

– This model is suitable for problems with static load balancing (e.g. very 
regular fluid element analysis, image processing).  

– It is easy to debugging, as there is only one copy of code executing in a 
highly synchronized fashion.  

 

• Implementations 
– FORTRAN 90 (F90), FORTRAN 95 (F95)  
– High Performance Fortran (HPF) 
– RapidMind, Ct, MapReduce, and CUDA 
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Task Parallel Model 

• Each processor executes a different thread 
or process on the same or different data, 
and each thread may execute the same or 
different code.  

• Implementations 

– Threading Building Blocks (TBB) 

– Task Parallel Library (TPL) 

– Intel Concurrent Collections (CnC) 
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Message Passing Model 

• A set of tasks use their own local memory during 
computation 
– Multiple tasks can reside on the same physical machine as well 

across an arbitrary number of machines  
– Tasks exchange data through communications by sending and 

receiving messages 
– Data transfer usually requires cooperative operations to be 

performed by each process. For example, a send operation must 
have a matching receive operation.  

– From a programming perspective, message passing 
implementations commonly comprise a library of subroutines 
that are embedded into source code.  

• Implementations 
– MPI 
– Erlang 
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OPENMP 
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OpenMP 

• http://www.openmp.org  
• http://www.cOMPunity.org 
• Open Multi Processing 
 
• An Application Program Interface (API) that may be used to 

explicitly direct multi-threaded, shared memory parallelism  
• Comprised of three primary API components:  

– Compiler Directives  
– Library Routines  
– Environment Variables  

• Portable:  
– The API is specified for C/C++ and Fortran  
– Multiple platforms have been implemented  
– OpenMP 3.1 (2011) 
– OpenMP 4.0 (coming November 2012) 

http://www.openmp.org/
http://www.compunity.org/
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OpenMP 

• OpenMP Directives 

– Parallel construct 

– Work sharing constructs 

– Synchronization constructs 

• Run-time Library Routines 

• Environment Variables 
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Parallel Construct 

#include <omp.h>  
 
main ()  
{  int nthreads, tid, n;  
 
/* Fork a team of threads giving them their own copies of variables */  
#pragma omp parallel if (n>10,000) \ 
                                   private (tid) 
     { 
 

      /* Obtain and print thread id */  
     tid = omp_get_thread_num();  
     printf("Hello World from thread = %d\n", tid);  
     
      /* Only master thread does this */  
      if (tid == 0)  
      {  
           nthreads = omp_get_num_threads();  
           printf("Number of threads = %d\n", nthreads);  
      }  

 
   }/* All threads join master thread and terminate */ 
  

}  
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Parallel Construct 

#pragma omp parallel [clause ...] newline  

if (scalar_expression)  

private (list)  

shared (list)  

default (shared | none)  

firstprivate (list)  

reduction (operator: list)  

copyin (list)  

   structured_block  

Only Fortran API supports default(private) 
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Parallel Construct 

• When a thread reaches a PARALLEL directive, it creates a team 
of threads and becomes the master of the team. 

• There is an implied barrier at the end of a parallel section. 
Only the master thread continues execution past this point.  

 

• The number of threads in a parallel region is determined by 
the following factors, in order of precedence:  

– omp_set_num_threads() library function  

– OMP_NUM_THREADS environment variable 

– Implementation default 

 

• Threads are numbered from 0 (master thread) to N-1  
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Parallel Construct 

• Dynamic Threads 
– By default, a program with multiple parallel regions will use the same 

number of threads to execute each region. This behavior can be 
changed to allow the run-time system to dynamically adjust the number 
of threads that are created for a given parallel section.  

 
– Use of the omp_set_dynamic() library function  
– Setting of the OMP_DYNAMIC environment variable  

» setenv OMP_DYNAMIC TRUE  

 

• Nested Parallel Regions 
– A parallel region nested within another parallel region results in the 

creation of a new team, consisting of one thread, by default.  
 

• Restrictions 
– A parallel region must be a structured block that does not span multiple 

routines or code files  
– It is illegal to branch into or out of a parallel region  
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Work Sharing Constructs 

• FOR  

– Shares iterations of a loop across the team. Represents a type of "data parallelism".  

• SECTIONS  

– Breaks work into separate, discrete sections. Each section is executed by a thread. 
Can be used to implement a type of "functional parallelism".  

• SINGLE  

– Serializes a section of code  



Work Sharing: FOR Directive 

double doc_product ( int n, double x[], double y[] ) 

{ 

  int i; 

  double xdoty; 

 

  xdoty = 0.0; 

 

# pragma omp parallel Shared ( n, x, y )private ( i ) \ 

  reduction ( + : xdoty ) 

{ 

# pragma omp for 

 

  for ( i = 0; i < n; i++ ) 

  { 

    xdoty = xdoty + x[i] * y[i]; 

  } 

 

  return xdoty; 

} 

} 
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Work Sharing: FOR Directive 

#include <omp.h>  
#define CHUNKSIZE 100  
#define N 1000  
 
main ()  
{ int i, chunk;  
  float a[N], b[N], c[N];  
 
/* Some initializations */  
for (i=0; i < N; i++)  

  a[i] = b[i] = i * 1.0;  
 chunk = CHUNKSIZE;  
 
#pragma omp parallel shared(a,b,c,chunk) private(i)  

{  

#pragma omp for schedule (dynamic,chunk) nowait  
for (i=0; i < N; i++)  
c[i] = a[i] + b[i];  
} /* end of parallel section */  

}  
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Work Sharing: FOR Directive 

#pragma omp for [clause ...]   

schedule (type [,chunk])  

ordered  

private (list)  

firstprivate (list)  

lastprivate (list)  

shared (list)  

reduction (operator: list)  

nowait  

for_loop  



Schedule 

• Static 

– Distribute iterations in blocks of size "chunk" over the threads in a 
round-robin fashion 

– In absence of "chunk", each thread executes approx. N/P chunks for a 
loop of length N and P threads 

– Done at compilation time  

• Dynamic 

– Fixed portions of work; size is controlled by the value of chunk 

–  When a thread finishes, it starts on the next portion of work 

– Done at run time 

• Guided 

– Same dynamic behavior as "dynamic", but size of the portion of work 
decreases exponentially 

• Runtime 

– The compiler (or runtime system) decides what is best to use 
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#include <omp.h>  

#define N 1000  

 

main ()  

{ int i; float a[N], b[N], c[N];  

 

/* Some initializations */  

for (i=0; i < N; i++)  

a[i] = b[i] = i * 1.0;  

 

#pragma omp parallel shared(a,b,c) private(i)  

{  

#pragma omp sections nowait  

{  

#pragma omp section  

for (i=0; i < N/2; i++)  

c[i] = a[i] + b[i];  

 

#pragma omp section  

for (i=N/2; i < N; i++)  

c[i] = a[i] * b[i];  

} /* end of sections */ }  

 

/* end of parallel section */  

}  

Work Sharing: SECTIONS Directive 
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#pragma omp sections [clause ...]  

private (list)  

firstprivate (list)  

lastprivate (list)  

reduction (operator: list) nowait  

 

{  

 

#pragma omp section 

  

structured_block  

 

#pragma omp section 

 

structured_block  
 

}  

Work Sharing: SECTIONS Directive 
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#pragma omp single [clause ...]  

private (list)  

firstprivate (list)  

nowait  

 

structured_block  

Work Sharing: SINGLE Directive 
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Parallel For 

#pragma omp parallel for default(none) \ 

        shared(m,n,a,b,c) private(i,j) 

   for (i=0; i<m; i++) 

   { 

      a[i] = 0.0; 

      for (j=0; j<n; j++) 

         a[i] += b[i*n+j]*c[j]; 

   } /*-- End of omp parallel for --*/ 

} 
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OpenMP: Quicksort 

void quick_sort(double *data, int initialIndex, int finalIndex) 

{ 

 if(initialIndex < finalIndex) 

 { 

  int mid = partition_data(data, initialIndex, finalIndex); 

 

  #pragma omp parallel sections 

  { 

   #pragma omp section 

   { quick_sort(data,initialIndex, mid-1); 

               } 

   #pragma omp section 

            { 

    quick_sort(data, mid+1, finalIndex); 

            } 

  } 

    } 

} 



ICOM 4036: Programming Languages 38 

Synchronization Constructs 

• MASTER Directive  

• CRITICAL Directive  

• BARRIER Directive  

• ATOMIC Directive  

• FLUSH Directive  

• ORDERED Directive  
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MASTER Directive 

• The MASTER directive specifies a region that is to 
be executed only by the master thread of the team. 
All other threads on the team skip this section of 
code  

– There is no implied barrier associated with this directive 

 
#pragma omp master  

structured_block  
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BARRIER Directive  
 
• When a BARRIER directive is used, a thread will wait at that 

point until all other threads have reached that barrier.  

 

• Should be used If data is updated asynchronously and data 
integrity is at risk 

– Between parts in the code that read and write the same section 
of memory 

– After one iteration in a solver 

 

• Unfortunately, barriers tend to be expensive and also may 
not scale to a large number of processors. Therefore, use 
them with care 

 

#pragma omp barrier 

 



Master and Barrier  

#pragma omp parallel 

{ 

 do_many_things(); 

#pragma omp master 

  { exchange_boundaries(); } 

#pragma omp barrier 

 do_many_other_things(); 

} 
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CRITICAL Directive 

• The CRITICAL directive specifies a region of code that must 
be executed by only one thread at a time.  
– If a thread is currently executing inside a CRITICAL region and 

another thread reaches that CRITICAL region and attempts to 
execute it, it will block until the first thread exits that CRITICAL 
region.  

– The optional name enables multiple different CRITICAL regions 
to exist:  

• Names act as global identifiers. Different CRITICAL regions with 
the same name are treated as the same region.  

• All CRITICAL sections which are unnamed, are treated as the 
same section.  

 

 

#pragma omp critical [ name ]  

  structured_block  
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OpenMP example: Critical 

#pragma omp parallel  
   { 
      #pragma omp single 
         printf("Number of threads is %d\n",omp_get_num_threads()); 
   } 
 
   sum = SUM_INIT; 
   printf("Value of sum prior to parallel region: %d\n",sum); 
 
   #pragma omp parallel default(none) shared(n,a,sum) \ 
           private(TID,sumLocal) 
   { 
      TID = omp_get_thread_num(); 
      sumLocal = 0; 
       
      #pragma omp for 
        for (i=0; i<n; i++) 
          sumLocal += a[i]; 
       
      #pragma omp critical (update_sum) 
      { 
        sum += sumLocal; 
        printf("TID=%d: sumLocal = %d sum = %d\n",TID,sumLocal,sum); 
      } 
   } /*-- End of parallel region --*/ 



Tasking in OpenMP 

my_pointer = listhead; 

#pragma omp parallel 

{ #pragma omp single nowait 

 { while(my_pointer) { 

  #pragma omp task firstprivate(my_pointer) 

  { 

      do_independent_work (my_pointer); 

  } 

  my_pointer = my_pointer->next ;} 

 } // End of single - no implied barrier (nowait) 

} // End of parallel region - implied barrier 
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Tasking in OpenMP 

int main(int argc, char *argv[]) { 

#pragma omp parallel 

{ 

 #pragma omp single 

 { 

  #pragma omp task 

  {printf("Hello ");} 

  #pragma omp task 

  {printf("World ");} 

  #pragma omp taskwait 

  printf(“\nThank You “); 

 } 

} // End of parallel region  

} 
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Run-Time Library Routines 

• OMP_SET_NUM_THREADS  
• OMP_GET_NUM_THREADS  
• OMP_GET_MAX_THREADS  
• OMP_GET_THREAD_NUM  
• OMP_GET_NUM_PROCS  
• OMP_IN_PARALLEL  
• OMP_SET_DYNAMIC  
• OMP_GET_DYNAMIC  
• OMP_SET_NESTED  
• OMP_GET_NESTED  
• OMP_INIT_LOCK  
• OMP_DESTROY_LOCK  
• OMP_SET_LOCK  
• OMP_UNSET_LOCK  
• OMP_TEST_LOCK  
• OMP_GET_WTIME  
• OMP_GET_WTICK  
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OMP_SET_DYNAMIC  

void omp_set_dynamic(int dynamic_threads)  

 

• Enables or disables dynamic adjustment (by the 
run time system) of the number of threads 
available for execution of parallel regions.  

• The default setting is implementation dependent.  

• Must be called from a serial section of the 
program.  
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OMP_SET_NUM_THREADS  

void omp_set_num_threads(int num_threads)  
 
• The dynamic threads mechanism modifies the 

effect of this routine.  
– Enabled: specifies the maximum number of threads that 

can be used for any parallel region by the dynamic 
threads mechanism.  

– Disabled: specifies exact number of threads to use until 
next call to this routine.  

• This routine can only be called from the serial 
portions of the code  
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OMP_GET_WTIME  

double omp_get_wtime(void)  
 

• Provides a portable wall clock timing routine  
• Returns a double-precision floating point value 

equal to the number of elapsed seconds since 
some point in the past.  
– Usually used in "pairs" with the value of the first call 

subtracted from the value of the second call to obtain the 
elapsed time for a block of code.  

• Designed to be "per thread" times, and therefore 
may not be globally consistent across all threads in 
a team 
– depends upon what a thread is doing compared to other 

threads.  
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Environment Variables 

• OMP_SCHEDULE  
– Applies only to  for and  parallel for (C/C++) directives which have their 

schedule clause set to RUNTIME.  
– The value of this variable determines how iterations of the loop are 

scheduled on processors. 
• setenv OMP_SCHEDULE "guided, 4"  
• setenv OMP_SCHEDULE "dynamic"  

 
• OMP_NUM_THREADS  

– Sets the maximum number of threads to use during execution.  
• setenv OMP_NUM_THREADS 8  

 
• OMP_DYNAMIC  

– Enables or disables dynamic adjustment of the number of threads 
available for execution of parallel regions.  

– Valid values are TRUE or FALSE.  
• setenv OMP_DYNAMIC TRUE  
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Performance considerations 

• Be aware of the Amdahl’s law  
– Minimize serial code 
– Remove dependencies among iterations 

• Balance the load  
– Experiment with using SCHEDULE clause 

• Be aware of directives cost 
– Parallelize outer loops 
– Minimize the number of directives 
– Minimize synchronization – minimize the use of BARRIER, 

CRITICAL, ORDERED 

– Consider using NOWAIT clause of OMP DO when enclosing several 
loops inside one PARALLEL region. 

– Merge loops to reduce synchronization cost 

• Reduce false sharing 
– Use private variables 

• Try task level parallelism 



ICOM 4036: Programming Languages 52 

CUDA 



CUDA 

• Compute Unified 
Device Architecture 

– Designed and developed 
by NVIDIA 

– Data parallel 
programming interface 
to GPUs 

• Requires an NVIDIA 
GPU (GeForce, Tesla, 
Quadro) 
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Eugene d’Eon, David Luebke, Eric Enderton 

In Proc. EGSR 2007 and GPU Gems 3 



3 Ways to Accelerate Applications 

Applications 

Libraries 

“Drop-in” 

Acceleration 

Programming 
Languages 

OpenACC 
Directives 

Maximum 

Flexibility 

Easily Accelerate 

Applications 

© NVIDIA 2013 



GPU Programming Languages 

OpenACC, CUDA Fortran Fortran 

OpenACC, CUDA C C 

Thrust, CUDA C++ C++ 

PyCUDA, Copperhead Python 

Alea.cuBase F# 

MATLAB, Mathematica, LabVIEW Numerical analytics 

© NVIDIA 2013 



GPU Threads 

• GPU threads are extremely lightweight 

– Very little creation overhead 

• GPU needs 1000s of threads for full 
efficiency 

– Multi-core CPU needs only a few 
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Computational Grid 

 

• The computational grid 
consist of a grid of thread 
blocks 

• All blocks execute the same 
program (kernel). Only one 
kernel at a time.  

• A thread block is a group of 
threads that can cooperate 
with each other by: 
– Synchronizing their execution 

• For hazard-free shared memory 
accesses 

– Efficiently sharing data 
through a low latency shared 
memory 

– Two threads from two 
different blocks cannot 
cooperate 

 

 



CUDA Parallel Threads and Memory 

Thread 

Per-thread Private 
Local Memory 

Block 

Per-block 
Shared 

Memory 

Grid 0 

. . . 

Per-app 

Device 
Global 

Memory 

. . . 

Grid 1 

__device__  float GlobalVar; 

__shared__  float SharedVar; 
 float  LocalVar; 

Sequence 

Registers 



CUDA kernel maps to Grid of Blocks 

GPU 
 

S
M

e
m

 

S
M

e
m

 

S
M

e
m

 

PCIe 
Bridge 

Host 
Memory 

CPU 

Cache 

Device Memory 

Cache 

. . . 

Host Thread Grid of Thread Blocks 
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Kernel Function call  

• kernel<<<grid, block, stream, shared_mem>>>(); 

– Grid: Grid dimension (up to 2D) 

– Block: Block dimension (up to 3D) 

– Stream: stream ID (optional) 

– Shared_mem: shared memory size (optional) 

 

__global__ void filter(int *in, int *out); 

 

dim3 grid(16, 16); 

dim3 block (16, 16) ; 

filter <<< grid, block, 0, 0 >>> (in, out); 

\\ filter <<< grid, block >>> (in, out); 
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CUDA Example:  Add_matrix 

// Set grid size 

const int N = 1024; 

const int blocksize = 16; 

 

// Compute kernel 

__global__ 

void add_matrix( float* a, float *b, float *c, int N ) 

{ 

 // threadIdx.x is a built-in variable provided by CUDA at runtime  
int i = blockIdx.x * blockDim.x + threadIdx.x; 

int j = blockIdx.y * blockDim.y + threadIdx.y; 

int index = i + j*N; 

if ( i < N && j < N ) 

 c[index] = a[index] + b[index]; 

} 
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CUDA Example:  Add_matrix 

int main() { 

   \\ CPU memory allocation 

float *a = new float[N*N]; 

float *b = new float[N*N]; 

float *c = new float[N*N]; 

 

for ( int i = 0; i < N*N; ++i ) { 

 a[i] = 1.0f; b[i] = 3.5f; } 

 

   \\GPU memory allocation 

float *ad, *bd, *cd; 

const int size = N*N*sizeof(float); 

cudaMalloc( (void**)&ad, size ); 

cudaMalloc( (void**)&bd, size ); 

cudaMalloc( (void**)&cd, size ); 
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CUDA Example:  Add_matrix 

\\ copy data to GPU 
cudaMemcpy( ad, a, size, cudaMemcpyHostToDevice ); 
cudaMemcpy( bd, b, size, cudaMemcpyHostToDevice ); 
 
\\ execute kernel 
dim3 dimBlock( blocksize, blocksize ); 
dim3 dimGrid( N/dimBlock.x, N/dimBlock.y ); 
add_matrix<<<dimGrid, dimBlock>>>( ad, bd, cd, N ); 
 
\\ copy result back to CPU 
cudaMemcpy( c, cd, size, cudaMemcpyDeviceToHost ); 
 
\\ clean up and return 
cudaFree( ad ); cudaFree( bd ); cudaFree( cd ); 
delete[] a; delete[] b; delete[] c; 
return EXIT_SUCCESS; 

} 
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NVCC Compiler 

• CUDA kernels are typically stored in files 
ending with .cu 

• NVCC uses the host compiler (CL/G++) to 
compile CPU code 

• NVCC automatically handles #include's and 
linking 

 

>> nvcc  -o executable  program.cu 

>> ./executable 
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Memory Model 

• Registers  
– Per thread, Read-Write 

• Local memory  
– Per thread, Read-Write 

• Shared memory  
– Per block Read-Write For 

sharing data within a block 

• Global memory  
– Per grid Read-Write Not 

cached 

• Constant memory  
– Per grid Read-only Cached 

• Texture memory  
– Per grid Read-only 

Spatially cached 

 



CUDA Type Qualifiers 

Function type 
qualifiers 

__device__ 
• Executed on the device 
• Callable from the device 

only 

__global__ 
• Executed on the device 
• Callable from the host 

only 

__host__ 
• Executed on the host 
• Callable from the host 

only 
• Default type if 

unspecified 

Variable type qualifiers 

__device__ 

• global memory space 

• Is accessible from all the 
threads within the grid 

__constant__ 

• constant memory space 

• Is accessible from all the 
threads within the grid 

__shared__ 

• space of a thread block 

• Is only accessible from all 
the threads within the 
block 



CUDA Variable Type Qualifiers 

• “automatic” scalar variables without qualifier reside 
in a register 

– compiler will spill to thread local memory 

• “automatic” array variables without qualifier reside 
in thread-local memory 

Variable declaration Memory Scope Lifetime 

             int var; register thread thread 

             int array_var[10]; local thread thread 

__shared__   int shared_var; shared block block 

__device__   int global_var; global grid application 

__constant__ int constant_var; constant grid application 



CUDA Variable Type Performance 

• scalar variables reside in fast, on-chip registers 

• shared variables reside in fast, on-chip memories 

• thread-local arrays & global variables reside in uncached off-
chip memory 

• constant variables reside in cached off-chip memory 

Variable declaration Memory Penalty 

             int var; register 1x 

             int array_var[10]; local 100x 

__shared__   int shared_var; shared 1x 

__device__   int global_var; global 100x 

__constant__ int constant_var; constant 1x 



Example – shared variables 

// Adjacent Difference application: 

// compute result[i] = input[i] – input[i-1] 

__global__ void adj_diff_naive(int *result, int *input) 

{ 

  // compute this thread’s global index 

  unsigned int i = blockDim.x * blockIdx.x + threadIdx.x; 

 

  if(i > 0) 

  { 

    // each thread loads two elements from global memory 

    int x_i = input[i]; 

    int x_i_minus_one = input[i-1]; 

    result[i] = x_i – x_i_minus_one; 

  } 

} 



Example – shared variables 

// optimized version of adjacent difference 

__global__ void adj_diff(int *result, int *input) 

{ 

  // shorthand for threadIdx.x 

  int tx = threadIdx.x; 

  // allocate a __shared__ array, one element per thread 

  __shared__ int s_data[BLOCK_SIZE]; 

  // each thread reads one element to s_data 

  unsigned int i = blockDim.x * blockIdx.x + threadIdx.x; 

  s_data[tx] = input[i]; 

 

   if(tx > 0) 

     result[i] = s_data[tx] – s_data[tx–1]; 

   else if(i > 0) 

  { 

    // handle thread block boundary 

    result[i] = s_data[tx] – input[i-1]; 

  } 

__syncthreads(); 

} 



CUDA Timer 

int main() 

{    float myTime; 

     cudaEvent_T myTimerStart, myTimerStop;  

     cudaEventCreate(&myTimerStart); 

     cudaEventCreate(&myTimerStop); 

  

     cudaEventRecord(myTimerStart, 0);  

     // task to be timed  

     cudaEventRecord(myTimerStop, 0);  

      

     cudaEventSynchronize(myTimerStop); 

     cudaEventElapsedTime(&myTime, myTimerStart,     

                                        myTimerStop);  } 
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TBB 
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TBB: Threading Building Blocks 

• http://threadingbuildingblocks.org   

• Task-based parallelism  

• C++ Template library 

– abstracts platform details and threading 
mechanisms for scalability and performance 

– TBB's task manager 

– Scalable memory allocator 

– Concurrent container 

– Generic Parallel Algorithms  

 

http://threadingbuildingblocks.org/
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TBB  

• Tasks are light-weight entities at user-level 

• TBB parallel algorithms map tasks onto threads 
automatically 

– Task scheduler manages the thread pool 

• Scheduler is unfair to favor tasks that have been most 
recent in the cache 

– Task scheduler is designed to address common 
performance issues of parallel programming with native 
threads 

• Fair scheduling  Non-preemptive unfair scheduling 

• High overhead  Programmer specifies tasks, not threads 

• Load imbalance  Work-stealing balances load 
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TBB   

• TBB is not intended for 

– I/O bound processing 

– Real-time processing 

• Direct use only from C++ 

• Distributed memory not supported 

 

 



TBB versus OpenMP 

• TBB provides acceptable scalability for 
multi-core platforms 

– TBB has been designed to be more conducive to 
application parallelization on client platforms 
such as laptops and desktops 

– TBB goes beyond data parallelism to be suitable 
for programs with nested parallelism, irregular 
parallelism and task parallelism.  

• OpenMP and MPI continue to be good 
choices in High Performance Computing 
applications 
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TBB Modules 
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TBB Modules 
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TBB example  

#include “tbb/task_scheduler_int.h” 

#include “tbb/blocked_range.h” 

#include “tbb/parallel_for.h” 

 

using namespace tbb; 

 

int main(int argc, char *argv[]) 

{ 

   task_scheduler_init init; 

   parallel_change_array(); 

  

} 
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TBB example: Parallel_for  

 

 

void parallel_change_array() 

 

{ 

 parallel for ( blocked_range <int> (0, list_count), 

 [=](const blocked_range <int> & r) 

     { 

    for (int i=r.begin(); i< r.end(); i++) 

        { 

   a[i] *=2; 

        } 

     } 

    ); 

} 

    



TBB Example: Time  

#include <iostream> 

#include "tbb/task_scheduler_init.h" 

#include "tbb/parallel_for.h" 

#include "tbb/blocked_range.h" 

#include "tbb/tick_count.h" 

using namespace tbb; 

using namespace std; 

 

class vector_mult{ 

    double *const v1, *const v2; double *v3;   

  

public: 

    vector_mult(double *vec1, double *vec2, double *vec3) 

        : v1(vec1), v2(vec2), v3(vec3) { } 

    void operator() (const blocked_range<size_t> &r) const { 

        for(size_t i=r.begin(); i!=r.end(); i++) 

            v3[i] = v1[i] * v2[i]; 

    } 

}; 
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TBB Example: Time 

const size_t vec_size = 1000000; 

 

int main(int argc, char* argv[]) 

{ 

    // allocate storage for vectors 

    double *v1, *v2, *v3; 

    v1 = (double*)malloc(vec_size*sizeof(double)); 

    v2 = (double*)malloc(vec_size*sizeof(double)); 

    v3 = (double*)malloc(vec_size*sizeof(double)); 

 

   

  for(size_t i=0; i<vec_size; i++) { v1[i] = v2[i] = v3[i] = i; } 

    task_scheduler_init init; 

    tick_count parallel_start = tick_count::now(); 

    parallel_for( blocked_range<size_t>(0,vec_size,1000),      

           vector_mult(v1,v2,v3) ); 

    tick_count parallel_end = tick_count::now(); 

 

    return 0; 

} 
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TBB Example: Dot Product 

#include <iostream> 

#include "tbb/task_scheduler_init.h" 

#include "tbb/parallel_reduce.h" 

#include "tbb/blocked_range.h" 

using namespace tbb; 

using namespace std; 

 

class vector_dot_prod { 

    double *const v1, *const v2; 

public: 

    double result;  

    // constructor copies the arguments into local storage 

    vector_dot_prod(double *vec1, double *vec2) 

        : v1(vec1), v2(vec2), result(0) { } 

    // splitting constructor 

    vector_dot_prod(vector_dot_prod &vdp, split) 

        : v1(vdp.v1), v2(vdp.v2), result(0) { } 

    // overload () so it does a dot product 

    void operator() (const blocked_range<size_t> &r) { 

        for(size_t i=r.begin(); i!=r.end(); i++) 

            result += v1[i] * v2[i]; 

    } 

    // join method adds partial results 

    void join(vector_dot_prod &v) { result += v.result; } 

}; 
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TBB Example: Dot Product 

int main(int argc, char* argv[]) 

{ 

    // allocate storage for vectors 

    double *v1, *v2, result; 

    v1 = (double*)malloc(vec_size*sizeof(double)); 

    v2 = (double*)malloc(vec_size*sizeof(double)); 

 

     // dot-prod the vectors in parallel 

    task_scheduler_init init; 

    vector_dot_prod v(v1,v2); 

    parallel_reduce( blocked_range<size_t>(0,vec_size,1000), v ); 

 

    // print the result to make sure it is correct 

    cout << "Parallel dot product of the two vectors is " << v.result << 

endl; 

 

    return 0; 

} 
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MPI 
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Topic Overview 

• Message Passing Standard 

• Point-to-point Communication  

• Collective Communication  
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The MPI Process 

• Development began in early 1992 

• Open process/Broad participation 
– IBM,Intel, TMC, Meiko, Cray, Convex, Ncube 

– PVM, p4, Express, Linda, … 

– Laboratories, Universities, Government 

• Final version of draft in May 1994 

• Public and vendor implementations are now widely 
available 

• MPI 2.0 release in 1997 
– Parallel I/O 

– Remote memory operation (One sided) 

• MPI 3.0 current effort 
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Compiling and Running MPI  

• mpicc –o executable source.c –libraryname 

• mpirun –np 16 executable 

 

 

• Open source: MPICH, OpenMPI 
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Skeleton MPI Program 

 

#include "mpi.h" 

#include <stdio.h> 

 

int main( int argc, char *argv[] ) 

{ 

    int rank, size; 

    MPI_Init( &argc, &argv ); 

    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

    MPI_Comm_size( MPI_COMM_WORLD, &size ); 

    printf( "I am %d of %d\n", rank, size ); 

    MPI_Finalize(); 

    return 0; 

} 

 

 



Point-to-Point Communication 

Blocking  

Send 

Non-Blocking  

Send 

Blocking  

Receive 

Non-Blocking  

Receive 

Standard 

Mode 

Ready 

Mode 

Synchronous 

Mode 

Buffered 

Mode 

Send returns without 

guaranteeing the data to be 

sent has left 

 

Upon return from the receive routine 

the status of the data buffer is 

undetermined The receive does not return 

until the data to be sent has 

entered 

 

Send does not return until the 

data to be sent has left 
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Message Passing  
#include <stdio.h> 

#include "mpi.h 

 

int main(int argc,char *argv[]) 

{ 

  int myid, numprocs, tag,source,destination,count, buffer; 

  MPI_Status status;  

  MPI_Init(&argc,&argv); 

 

  MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

  MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

  tag=1234;  source=0;  destination=1;  count=1; 

   

  if(myid == source){ 

    buffer=5678; 

    MPI_Send(&buffer,count,MPI_INT,destination,tag,MPI_COMM_WORLD); 

    printf("processor %d  sent %d\n",myid,buffer); 

  } 

   

  if(myid == destination){ 

    MPI_Recv(&buffer,count,MPI_INT,source,tag,MPI_COMM_WORLD,&status); 

    printf("processor %d  got %d\n",myid,buffer); 

  } 

  MPI_Finalize(); 

} 
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Message Passing 

    MPI_Send( & buf, count, datatype, dest,   

             tag, comm ) 

 
– buf is the address of the data to be sent 

– count is the number of elements of the MPI datatype which 
buf contains 

– datatype is the MPI datatype 

– dest is the destination process for the message.  This is 
specified by the rank of the destination within the group 
associated with the communicator comm 

– tag is a marker used by the sender to distinguish between 
different types of messages 

– comm is the communicator shared by the sender and the 
receiver 
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Datatypes in MPI 

MPI Datatype C datatype 

MPI_CHAR signed char 

MPI_SHORT signed short int 

MPI_INT signed int 

MPI_LONG signed long int 

MPI_UNSIGNED_CHAR unsigned char 

MPI_UNSIGNED_SHORT unsigned short int 

MPI_UNSIGNED_INT unsigned int 

MPI_UNSIGNED_LONG unsigned long int 

MPI_FLOAT float 

MPI_DOUBLE double 

MPI_LONG_DOUBLE long double 

MPI_BYTE 

MPI_PACKED 
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Blocking Communication 

• Blocking send will send message and return 

– Does not mean that message has been received, just that process free to 
move on without adversely affecting message. 

• Four blocking point-to-point modes depending on when a send 
operation is initiated or completed 

 

– Standard 

• A send may be initiated even if a matching receive has not been 
initiated 

– Ready 

• A send can be initiated only if a matching receive has been 
initiated   

– Synchronous 

• A send will not complete until message deliver is guaranteed. 

– Buffered 

• Completion is always independent on matching receive. The 
message is buffered to ensure this.  
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Standard Send (MPI_Send) 

• It is up to MPI to decide whether outgoing messages will be 
buffered. 

• Completes once the message has been sent, which may or may not 
imply that the message has arrived at its destination 

• Can be started whether or not a matching receive has been posted. 
It may complete before a matching receive is posted. 

• Has non-local completion semantics, since successful completion of 
the send operation may depend on the occurrence of a matching 
receive.  
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Buffered Send (MPI_Bsend) 

• Can be started whether or not a matching receive has been posted. 
It may complete before a matching receive is posted. 

• Has local completion semantics: its completion does not depend on 
the occurrence of a matching receive. 

• In order to complete the operation, it may be necessary to buffer 
the outgoing message locally. For that purpose, buffer space is 

provided by the application. 



ICOM 4036: Programming Languages 97 

Synchronous Send (MPI_Ssend) 

• Can be started whether or not a matching receive was posted 

• Will complete successfully only if a matching receive is posted, and 
the receive operation has started to receive the message sent by the 
synchronous send. 

• Provides synchronous communication semantics: a communication 
does not complete at either end before both processes rendezvous 
at the communication.  
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Ready Send (MPI_Rsend) 

• Completes immediately 

• Can be started only if the matching receive has already been 
posted. 

• Saves on overhead by avoiding handshaking and buffering 



Non Blocking Communication 

• To overlap communication with computation, MPI 
provides a pair of functions for performing non-
blocking send and receive operations (“I” stands 
for “Immediate”) 

 

– MPI_Isend()  will return “immediately” even before source 
location is safe to be altered 
• int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int 

dest, int tag, MPI_Comm comm, MPI_Request *request) 

  

– MPI_Irecv() will return even if no message to accept 
• int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int 

source, int tag, MPI_Comm comm, MPI_Request *request)  
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Non Blocking Communication 

• These operations return before the 
operations have been completed.  

• Function MPI_Test tests whether or not the 
non- blocking send or receive operation 
identified by its request has finished.  

– int MPI_Test(MPI_Request *request, int 

*flag, MPI_Status *status)  

• MPI_Wait waits for the operation to 
complete.  

– int MPI_Wait(MPI_Request *request, 

MPI_Status *status) 
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Performance of Point-to-Point 
Routines  

Non-blocking operations  

perform best  

Performance gains depend  

upon message size   

The greatest gains occur 

 with smaller message sizes 
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Collective Communication 

• Point-to-point communications involve 
pairs of processes. 

• Many message passing systems provide 
operations which allow larger numbers of 
processes to participate 

– Broadcast 

– Scatter 

– Gather 

– Reduce 
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Broadcast 

MPI_Bcast(&buffer, count, datatype, root, 

communicator); 

 

• One node (root) sends a message all others 
receive the message  
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Broadcast 

#include <stdio.h> 

#include "mpi.h" 

#include <math.h> 

  

int main(argc,argv) 

int argc; 

char *argv[]; 

{ 

    int i,myid, numprocs; 

    int source,count; 

    int buffer[4]; 

    MPI_Status status; 

    MPI_Request request; 

  

    MPI_Init(&argc,&argv); 

    MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

    MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

    source=0; 

    count=4; 

    if(myid == source){ 

      for(i=0;i<count;i++) 

        buffer[i]=i; 

    } 

    MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD); 

    for(i=0;i<count;i++) 

      printf("%d ",buffer[i]); 

    printf("\n"); 

    MPI_Finalize(); 

} 
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Scatter 

• Similar to Broadcast but sends a section of an array to each 
processors 

 

• int MPI_Scatter(&sendbuf, sendcnts, sendtype, 

&recvbuf, recvcnts, recvtype, root, comm ); 

 

– Sendbuf is an array of size (number processors*sendcnts) 

– Sendcnts number of elements sent to each processor 

– Recvcnts number of elements obtained from the root processor  

– Recvbuf elements obtained from the root processor, may be an 
array  
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Gather 

• Used to collect data from all processors to the 
root, inverse of scatter 

• Data is collected into an array on root processor 
 

• int MPI_Gather(&sendbuf,sendcnts, 

sendtype, &recvbuf, 

recvcnts,recvtype,root, comm ) 

 
– Sendcnts # of elements sent from each processor 

– Sendbuf is an array of size sendcnts 

– Recvcnts # of elements obtained from each processor 

– Recvbuf of size Recvcnts*number of processors 
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Scatter/Gather 

#include <mpi.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

int numnodes,myid,mpi_err; 

#define mpi_root 0 

 

int main(int argc,char *argv[]) 

{ 

    int *myray,*send_ray,*back_ray; 

    int count; 

    int size,mysize,i,k,j,total; 

 MPI_Init(argc,argv); 

    MPI_Comm_size( MPI_COMM_WORLD, &numnodes ); 

    MPI_Comm_rank(MPI_COMM_WORLD, &myid); 

 

/* each processor will get count elements from the root */ 

 count=4; 

 myray=(int*)malloc(count*sizeof(int)); 

 

/* create the data to be sent on the root */ 

 if(myid == mpi_root){ 

       size=count*numnodes; 

  send_ray=(int*)malloc(size*sizeof(int)); 

  back_ray=(int*)malloc(numnodes*sizeof(int)); 

  for(i=0;i<size;i++) 

   send_ray[i]=i; 

  } 
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Scatter/Gather (CONT….) 

/* send different data to each processor */ 

 MPI_Scatter(send_ray, count, MPI_INT, myray, count, MPI_INT,           

                           mpi_root, MPI_COMM_WORLD); 

                  

 

/* each processor does a local sum */ 

 total=0; 

 for(i=0;i<count;i++) 

     total=total+myray[i]; 

 printf("myid= %d total= %d\n ",myid,total); 

 

/* send the local sums back to the root */ 

    MPI_Gather(&total,1, MPI_INT,back_ray, 1, MPI_INT,                                        

                     mpi_root, MPI_COMM_WORLD); 

 

/* the root prints the global sum */ 

 if(myid == mpi_root){ 

   total=0; 

   for(i=0;i<numnodes;i++) 

     total=total+back_ray[i]; 

   printf("results from all processors= %d \n ",total); 

 } 

    mpi_err = MPI_Finalize(); 

} 
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Reduce 

• Used to combine partial results from all processors. Result 
returned to root processor 

• int MPI_Reduce(&sendbuf, &recvbuf, count, 

datatype, operation,root, communicator) 

– Operation is a type of mathematical operation. Several 
types of operations available 

   MPI_MAX Maximum 

      MPI_MIN  Minimum 

      MPI_PROD Product 

      MPI_SUM  Sum 

      MPI_LAND Logical and 

      MPI_LOR  Logical or 

      MPI_LXOR Logical exclusive or 

      MPI_BAND  Bitwise and 

      MPI_BOR  Bitwise or 

      MPI_BXOR Bitwise exclusive or 

      MPI_MAXLOC Maximum value and location 

      MPI_MINLOC Minimum value and location 
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Scatter/Reduce 

#include <mpi.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

int numnodes,myid,mpi_err; 

#define mpi_root 0 

 

void init_it(int  *argc, char ***argv); 

 

void init_it(int  *argc, char ***argv) { 

 mpi_err = MPI_Init(argc,argv); 

    mpi_err = MPI_Comm_size( MPI_COMM_WORLD, &numnodes ); 

    mpi_err = MPI_Comm_rank(MPI_COMM_WORLD, &myid); 

} 

 

int main(int argc,char *argv[]){ 

 int *myray,*send_ray,*back_ray; 

 int count; 

 int size,mysize,i,k,j,total,gtotal; 

  

 init_it(&argc,&argv); 

 

/* each processor will get count elements from the root */ 

 count=4; 

 myray=(int*)malloc(count*sizeof(int)); 

/* create the data to be sent on the root */ 

 if(myid == mpi_root){ 

     size=count*numnodes; 

  send_ray=(int*)malloc(size*sizeof(int)); 

  back_ray=(int*)malloc(numnodes*sizeof(int)); 

  for(i=0;i<size;i++) 

   send_ray[i]=i; 

  } 



ICOM 4036: Programming Languages 111 

Scatter/Reduce (cont …) 

/* send different data to each processor */ 

 MPI_Scatter(send_ray, count, MPI_INT, myray, count, 

               MPI_INT, mpi_root, MPI_COMM_WORLD);  

                 

/* each processor does a local sum */ 

 total=0; 

 for(i=0;i<count;i++) 

     total=total+myray[i]; 

 printf("myid= %d total= %d\n ",myid,total); 

 

/* send the local sums back to the root */ 

    MPI_Reduce(&total, &gtotal,1, MPI_INT, 

      MPI_SUM, mpi_root, MPI_COMM_WORLD); 

 

/* the root prints the global sum */ 

 if(myid == mpi_root){ 

   printf("results from all processors= %d \n ",gtotal); 

 } 

    mpi_err = MPI_Finalize(); 

} 

 



MPI + OpenMP: Threads per process 

#include <omp.h> 

#include <mpi.h> 

#include <stdio.h> 

 

int main (int argc, char *argv[]){ 

   int p, myrank, c; 

 

   MPI_Init(&argc, &argv); 

    

   #pragma omp parallel reduction(+:c) 

   { 

     c=get_number_of_threads(); 

   } 

   printf(“%d\n”, c); 

 

MPI_Finalize(); 

 

return 0; 

} 
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The Future of MPI  

Source: Kathy Jelick, 

UCB 



MPICH2 Multicore Optimizations 

• Using MPI on multicore 

– One MPI process per core – fast 
communication (214 ns latency) 

– Multithreaded – Hybrid model with OpenMP, 
UPC, pthreads 

• Nemesis: New “multi-method” communication 
subsystem for MPICH2 

– uses lock-free queues 

– One receive queue per process 

– Implemented using atomic assembly instructions: no 
lock overhead 

– Optimized to reduce cache misses 

 



Multithreaded MPI Programming 

• Pros 

– Hybrid programming model 

– Use shared-memory algorithms where appropriate 

– One copy of large array shared by all threads 

• Cons 

– In general threaded programming can be difficult to 
write, debug and verify (e.g., using pthreads) 

 

• OpenMP and UPC make threaded programming 
easier 

– Language constructs to parallelize loops, etc. 

 

 



MPI Supported Thread Levels 

• MPI_THREAD_SINGLE 

– Only one user thread is allowed 

• MPI_THREAD_FUNNELED 

– May have one or more threads, but only the “main” thread may 
make MPI calls 

• MPI_THREAD_SERIALIZED 

– May have one or more threads, but only one thread can make 
MPI calls at a time.  It is the application developer’s 
responsibility to guarantee this. 

• MPI_THREAD_MULTIPLE 

– May have one or more threads.  Any thread can make MPI calls 
at any time (with certain conditions). 

 

• MPICH2 supports MPI_THREAD_MULTIPLE 



Using Multiple Threads in MPI 

• The main thread must call MPI_Init_thread() 

– App requests a thread level 

– MPI returns the thread level actually provided 

– These values need not be the same on every process 

– Hint: Request only the level you need to avoid unnecessary 
overhead for higher thread levels. 

• MPI_Init_thread() 

– Called in place of MPI_Init() 

– Only the main thread should call this 

– The main thread (and only the main thread) must call 
MPI_Finalize  

• there is no MPI_Finalize_thread() 

• MPI does not provide routines to create threads 

– That’s left to the user 

• E.g., use pthreads OpenMP, etc 
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Summary 

• Definitions related to concurrency 

• Introduction to parallel programming 
– Flynn’s Taxonomy (parallel architectures) 

– Memory access models 

– Parallel programming models 

• Implementation Tour 
– Threads: OpenMP  

– Data Parallel: CUDA 

– Task Parallel: TBB 

– Message Passing: MPI 

 


