
PROGRAMMING LANGUAGES

1

Creating Languages in Racket

Sometimes you just have to make a better mousetrap.

Matthew Flatt, University of Utah

Choosing the right tool for a simple job is easy: a screwdriver is usually the best option when you
need to change the battery in a toy, and grep is the obvious choice to check for a word in a text
document. For more complex tasks, the choice of tool is rarely so straightforward—all the more so
for a programming task, where programmers have an unparalleled ability to construct their own
tools. Programmers frequently solve programming problems by creating new tool programs, such as
scripts that generate source code from tables of data.

Since programmers often build task-specific tools, one way to make them more productive is to
give them better tool-making tools. When tools take the form of program generators, this idea leads
to libraries for creating languages that are directly extensible. Programmers may even be encouraged
to think about a problem in terms of a language that would better support the task. This approach is
sometimes called language-oriented programming.3

Racket is both a programming language and a framework for building programming languages.
A Racket program can contain definitions that extend the syntax of the language for use later in the
same program, and language extensions can be packaged as modules for use in multiple programs.
Racket supports a smooth path from relatively simple language extensions to completely new
languages, since a programming tool, like any other piece of software, is likely to start simple and
grow as demands on the language increase.

As an example task, consider the implementation of a text-adventure game (also known as
interactive fiction), where a player types commands to move around in a virtual world and interact
with objects:

You’re standing in a meadow.
There is a house to the north.
> north
You are standing in front of a house.
There is a door here.
> open door
The door is locked.
>

To make the game interesting, a programmer must populate the virtual world with places and
things that have rich behavior. Most any programming language could implement this virtual world,
but choosing the right language construct (i.e., the right tool) to represent each game element is a
crucial step in the development process.

The right constructs allow commands, places, and things to be created easily—avoiding error-

PROGRAMMING LANGUAGES

2

prone boilerplate code to set up the world’s state and connections—while also allowing the use of a
programming language’s full power to implement behaviors.

In a general-purpose programming language, no built-in language construct is likely to be a
perfect fit. For example, places and things could be objects, while commands could be implemented
as methods. The game’s players, however, don’t call methods but instead type commands that have
to be parsed and dynamically mapped to responses for places and things. Similarly, saving and
loading a game requires inspecting and restoring the state of places and things, which is partly a
matter of object serialization but also of setting variables to unmarshaled values (or else using an
indirection through a dictionary for each reference from one object to another).

Some programming languages include constructs—such as overloading or laziness—that a clever
programmer can exploit to encode a domain-specific language. The design of Racket addresses
the problem more directly; it gives programmers tools to explicitly extend the programming
language with new syntax. Some tasks require only a small extension to the core language, while
others benefit from the creation of an entirely new language. Racket supports both ends of the
spectrum, and it does so in a way that allows a smooth progression from one end to the other. As a
programmer’s needs or ambitions grow for a particular task, the programmer can take advantage of
ever more of Racket’s unified framework for language extension and construction.

The text-adventure example presented here illustrates the progression from a simple embedding
in Racket to a separate domain-specific language (including IDE support for syntax coloring),
explaining relevant Racket details along the way; no prior knowledge of Racket is necessary. Readers
who prefer a more complete introduction to the language should consult The Racket Guide.1

The example is a “toy” in multiple senses of the world, but it is also a scale model of industry
practice. Most every video-game developer uses a custom language, including the Racket-based
language that is used to implement content for the Uncharted video-game series.2 Evidently, when
billions of entertainment dollars are on the line, the choice of programming language matters—even
to the point of creating new, special-purpose languages.

THE WORLD IN PLAIN RACKET
Our text adventure game contains a fixed set of places, such as a meadow, house, or desert, and a
fixed set of things, such as a door, key, or flower. The player navigates the world and interacts with
things using commands that are parsed as either one or two words: a single verb (i.e., an intransitive
verb, since it does not have a target object), such as help or look; or a verb followed by the name of a
thing (i.e., a transitive verb followed by a noun), such as open door or get key. Navigation words such
as north or in are treated as verbs. A user can save the game using the save and load verbs, which work
everywhere and prompt the user for a file name.

To implement a text-adventure game in Racket, you would start by declaring structure types for
each of the three game elements:

PROGRAMMING LANGUAGES

3

(struct verb
 (aliases ; list of symbols
 Desc ; string
 transitive?)) ; Boolean

(struct thing
 (name ; symbol
 [state #:mutable] ; any value
 actions)) ; list of verb–function pairs

(struct place
 (desc ; string
 [things #:mutable] ; list of things
 actions)) ; list of verb–function pairs

Racket is a dialect of Lisp and a descendant of Scheme, so its syntax uses parentheses and a
liberal grammar of identifiers (e.g., transitive? is an identifier). A semicolon introduces a newline-
terminated comment. Square brackets are interchangeable with parentheses but are used by
convention in certain contexts, such as grouping a field name with modifiers. The #:mutable
modifier declares a field as mutable, since fields are immutable by default.

The first struct form in the code binds verb to function, taking one argument for each field and
creating a verb instance. For example, you can define a south verb with alias s as

(define south (verb (list ’south ’s) “go south” #false))

Lisp and Racket programs tend to use strings for the text that is to be shown to an end user—for
example, verb descriptions such as “go south”. A symbol, written with a leading single quote (e.g.,
’south), is more typically used for an internal name, such as a verb alias.

Given the definition of south and a thing, flower, you could define a meadow place where the south
verb moves the player to a desert place:

(define meadow (place “You’re in a meadow.”
 (list flower)
 (list (cons south
 (lambda () desert)))))

The list function creates a list, while cons pairs two values. The cons function usually pairs
an element with a list to form a new list, but here cons is used to pair a verb with a function that
implements the verb’s response. The lambda form creates an anonymous function, which in this
case expects zero arguments.

When a verb’s response function produces a place, such as desert in the example, the game
execution engine will move the player to the returned place. The game engine’s support for saving

PROGRAMMING LANGUAGES

4

and loading game state, meanwhile, requires a mapping between places and their names. (Places can
be implemented as objects that can be serialized, but restoring a game requires both deserialization
and updating Racket-level variables such as meadow.) The record-element! function implements
mappings between names and places:

(define names (make-hash)) ; symbol to place/thing
(define elements (make-hash)) ; place/thing to symbol

(define (record-element! name val)
 (hash-set! names name val)
 (hash-set! elements val name))

(define (name->element name) (hash-ref names name))
(define (element->name obj) (hash-ref elements obj))

Consequently, the complete implementation of the meadow is:

(define meadow (place)) ; as above
(record-element! ’meadow meadow)

Things must be defined and registered in much the same way as places. Verbs must be collected
into a list to be used by the game’s command parser. Finally, the parsing and execution engine needs
a set of verbs that work everywhere, each with its response function. All of those pieces form the
interesting part of the game implementation, while the parsing and execution engine is a few dozen
lines of static infrastructure.

The complete game implementation is available online:

http://queue.acm.org/downloads/2011/racket/0-longhand/txtadv+world.rkt
http://queue.acm.org/downloads/2011/racket/0-longhand/README.txt

Note that the code needed to construct the virtual world is particularly verbose.

SYNTACTIC ABSTRACTION
Although the data-representation choices of the previous section are typical for a Racket program, a
Racket programmer is unlikely to write the repetitive code that directly defines and registers places,
since it includes so many boilerplate lists, conses, and lambdas. Instead, a Racket programmer
would write

(define-place meadow
 “You’re in a meadow.”
 [flower]
 ([south desert]))

http://queue.acm.org/downloads/2011/racket/0-longhand/txtadv+world.rkt
http://queue.acm.org/downloads/2011/racket/0-longhand/README.txt

PROGRAMMING LANGUAGES

5

and would add a define-place form to Racket using a pattern-based macro. The simplest form of such
a macro uses define-syntax-rule:

(define-syntax-rule (define-place id desc [thng] ([vrb expr]))
 (begin
 (define id (place desc
 (list thng)
 (list (cons vrb (lambda () expr)))))
 (record-element! ’id id)))

The form immediately after define-syntax-rule is a pattern, and the form after the pattern is
a template. A use of a macro that matches its pattern is replaced by the macro’s template, modulo
substitutions of pattern variables for their matches. The id, desc, thng, vrb, and expr identifiers in
this pattern are pattern variables.

Note that the define-place form cannot be a function. The desert expression after south is, in
general, an expression whose evaluation must be delayed until the south command is entered. More
significantly, the form should bind the variable meadow so that Racket expressions for commands can
refer to the place directly. In addition, the variable’s source name (as opposed to its value) is used to
register the place in the table of elements.

The define-place macro so far matches exactly one thing in a place and exactly one verb and
response expression. To generalize to any number of things, verbs, and expressions, you add ellipses
to the pattern:

(define-syntax-rule (define-place id desc
 [thng ...]
 ([vrb expr] ...))
 (begin
 (define id (place desc
 (list thng ...)
 (list (cons vrb (lambda () expr))
 ...)))
 (record-element! ’id id)))

Ellipses work in the obvious way, and with this generalized define-place, you can put both a
cactus and a key initially in the desert and respond to direction verbs other than north by staying in
the desert:

(define-place desert
 “You’re in a desert.”
 [cactus key]
 ([north meadow]
 [south desert]
 [east desert]
 [west desert]))

PROGRAMMING LANGUAGES

6

The macro for a thing is similarly straightforward:

(define-syntax-rule (define-thing id
 [vrb expr] ...)
 (begin
 (define id
 (thing ’id #false (list (cons vrb (lambda () expr)) ...)))
 (record-thing! ’id id)))

Verbs are slightly trickier, because you want to make simple verbs especially compact to specify,
and you need one kind of pattern for intransitive verbs and another for transitive verbs. The
following example illustrates the target syntax:

 (define-verbs all-verbs
 [quit]
 [north (= n) “go north”]
 [knock _]
 [get _ (= grab take) “take”])

This example defines four verbs: quit as an intransitive verb with no aliases; north as an
intransitive verb with alias n and a preferred description go north; knock as a transitive verb (as
indicated by the underscore) with no aliases; and get as a transitive verb with aliases grab and take
and preferred description take. Finally, all of these verbs are collected into a list that is bound to all-
verbs for use by the game’s command parser.

Implementing the define-verbs form requires a more general kind of pattern matching to support
different shapes of verb specifications and to match = and _ as literals. An implementation of define-
verbs can defer the work of handling an individual verb to a define-one-verb macro, which uses
define-syntax and syntax-rules:

(define-syntax define-one-verb
 (syntax-rules (= _)
 [(one-verb id (= alias ...) desc)
 (define id (verb (list ’id ’alias ...) desc #false))]
 [(one-verb id _ (= alias ...) desc)
 (define id (verb (list ’id ’alias ...) desc #true))]
 [(one-verb id)
 (define id (verb (list ’id) (symbol->string ’id) #false))]
 [(one-verb id _)
 (define id (verb (list ’id) (symbol->string ’id) #true))]))

The = and _ in parentheses after syntax-rules indicate that = and _ are literals, rather than
pattern variables, in the patterns that follow. Each pattern afterward has a corresponding template.

PROGRAMMING LANGUAGES

7

Thus, in

(define-verbs all-verbs

 [get _ (= grab take) “take”])

the define-verbs expansion turns the last clause into a define-one-verb use:

(define-one-verb get _ (= grab take) “take”)

This matches the first pattern of one-verb and expands into:

(define get (verb (list ’get ’grab ’take) “take” #true))

Finally, a define-everywhere form is created for defining verb responses that work throughout the
world, as needed for verbs such as save and load:

(define-syntax-rule (define-everywhere id ([vrb expr] ...))
 (define id (list (cons vrb (lambda () expr)) ...)))

(define-everywhere everywhere-actions
 ([quit (begin (printf “Bye!\n”) (exit))]
 [save (save-game)]
 [load (load-game)]
 ))

The define-place, define-thing, and define-verb macros are examples of syntactic abstraction.
They abstract over repeated patterns of syntax, so that a programmer can avoid boilerplate code and
concentrate on the creation of interesting verbs, places, and things.

 The revised game implementation, which has a compact and readable implementation of the
virtual world, is available online:

http://queue.acm.org/downloads/2011/racket/1-monolith/txtadv+world.rkt
http://queue.acm.org/downloads/2011/racket/1-monolith/README.txt

SYNTACTIC EXTENSION
A Racket programmer who is interested in writing a single text-adventure game would likely stop
extending the language at this point. If the text-adventure engine should be reusable for multiple
worlds, however, a Racket programmer is likely to take a step beyond syntactic abstraction to
syntactic extension.

The difference between abstraction and extension is partly in the eye of the beholder, but
extension suggests that functions such as place and record-element! can be kept private, while
define-place is exported for use in the world-defining module with implementation-independent

http://queue.acm.org/downloads/2011/racket/1-monolith/txtadv+world.rkt
http://queue.acm.org/downloads/2011/racket/1-monolith/

PROGRAMMING LANGUAGES

8

semantics. In the world-defining module, macros such as define-place have the same status as built-
in forms such as define and lambda.

To make this shift, you can put the define-verbs, define-place, define-thing, and define-
everywhere definitions in their own module, called world.rkt.

#lang racket
(require “txtadv.rkt”)

(define-verbs)
(define-everywhere)
(define-thing) ...
(define-place) ...

This module imports txtadv.rkt, which exports define-verbs, etc., as well as functions used in verb
responses such as save-game and load-game. Meanwhile, txtadv.rkt keeps private the structures and
other functions that implement the world data types.

#lang racket
(provide define-verbs define-thing
 define-place define-everywhere

 save-game
 load-game
 )

(struct verb)
....
(define-syntax-rule (define-verbs))
....

The #lang racket line that starts each module indicates that the module is implemented in the
racket language. In world.rkt, require additionally imports both the syntactic extensions and
functions that are exported by the txtadv.rkt module.

Since macro binding is part of the Racket language, as opposed to being implemented as a separate
preprocessor, macro bindings can work with module imports and exports in the same way as variable
bindings. In particular, the definition of the define-verbs macro can see the verb constructor
function because of the rules of lexical scope, while code in the world.rkt module cannot access verb
directly because of the same scoping rules. Since a use of define-verbs in world.rkt expands to a use
of verb, considerable language machinery is required for Racket to maintain lexical scope in the
presence of macro expansion, but the result is that syntactic extension is easy for programmers.

The modular game implementation is available online:
http://queue.acm.org/downloads/2011/racket/2-modules/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/2-modules/world.rkt
http://queue.acm.org/downloads/2011/racket/2-modules/README.txt

http://queue.acm.org/downloads/2011/racket/2-modules/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/2-modules/world.rkt
http://queue.acm.org/downloads/2011/racket/2-modules/README.txt

PROGRAMMING LANGUAGES

9

MODULE LANGUAGES
Although the world.rkt module cannot directly access constructor functions such as verb, the
module still has access to all of the Racket language and, via require, any other module’s exports.
More constraints on world.rkt may be appropriate to ensure that assumptions of txtadv.rkt are
satisfied.

To exert further control, you can convert txtadv.rkt from a module that exports a language
extension to one that exports a language. Then, instead of starting with #lang racket, world.rkt
starts with

#lang s-exp “txtadv.rkt”

For now, s-exp indicates that the language of world.rkt uses S-expression notation (i.e.,
parentheses), while txtadv.rkt defines syntactic forms. Later, the S-expression and syntactic-form
specifications are combined into a single name, analogous to #lang racket.

Along with changing world.rkt, you can change txtadv.rkt to export everything from racket:

#lang racket
(provide define-verbs
 (all-from-out racket))
....

Instead of (all-from-out racket), you could use (except-out (all-from-out racket) require)
to withhold the require form from world.rkt. Alternatively, instead of using all-from-out and then
naming bindings to withhold, you could explicitly export only certain pieces from racket.

The exports of txtadv.rkt completely determine the bindings that are available in world.rkt—not
only the functions, but also syntactic forms such as require or lambda. For example, txtadv.rkt could
supply a lambda binding to world.rkt that implements a different kind of function than the usual
lambda, such as functions with lazy evaluation.

More commonly, a module language can replace the #%module-begin form that implicitly wraps
the body of a module. Specifically, txtadv.rkt can provide an alternate #%module-body that forces
world.rkt to have a single define-verbs form, a single define-everywhere form, a sequence of define-
thing declarations, and a sequence of define-place declarations; if world.rkt has any other form,
it can be rejected as a syntax error. Such constraints can enforce restrictions to limit the power of
the txtadv.rkt language, but they can also be used to provide domain-specific checking and error
messages.

The game implemented with a txtadv.rkt language is available online:

http://queue.acm.org/downloads/2011/racket/3-module-lang/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/3-module-lang/world.rkt
http://queue.acm.org/downloads/2011/racket/3-module-lang/README.txt

The #%module-begin replacement in the implementation requires define-verbs followed by define-
everywhere, then allows any number of other declarations. The module must end with a place
expression, which is used as the starting location for the game.

http://queue.acm.org/downloads/2011/racket/3-module-lang/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/3-module-lang/world.rkt
http://queue.acm.org/downloads/2011/racket/3-module-lang/README.txt

PROGRAMMING LANGUAGES

10

STATIC CHECKS
The define-verb, define-place, and define-thing forms bind names in the same way as any other
Racket definition, and each reference to a verb, place, or thing is a Racket-level reference to the
defined name. This approach makes it easy for verb-response expressions, which are implemented
in Racket, to refer to other things and places in the virtual world. It also means, however, that
misusing a reference as a thing can lead to a runtime error. For example, the incorrect reference to
desert as a thing in

(define-place room
 “You’re in the house.”
 [trophy desert]
 ([out house-front]))

triggers a failure only when the player enters room, and the game engine fails when trying to print
the things within the place.

Many languages provide type checking or other static types to ensure the absence of certain
runtime errors. Racket macros can implement languages with static checks, and macros can even
implement language extensions that perform static checks within a base language that defers similar
checks to runtime. Specifically, you can adjust define-verb, define-place, and define-thing to check
certain references, such as requiring that the list of initial things in a place contain only names that
are defined as things. Similarly, names used as verbs with responses can be checked to ensure that
they are declared as verbs, suitably transitive or intransitive.

Implementing static checks typically requires macros that are more expressive than pattern-
matching macros. In Racket, arbitrary compile-time code can perform the role of expander for a
syntactic form, because the most general form of a macro definition is

(define-syntax id transformer-expr)

where transformer-expr is a compile-time expression that produces a function. The function must
accept one argument, which is a representation of a use of the id syntactic form, and the function
must produce a representation of the use’s expansion. In the same way that define-syntax-rule is
shorthand for define-syntax plus syntax-rules and a single pattern, syntax-rules is shorthand for
a function of one argument that pulls apart expressions of a certain shape (matching a pattern) and
constructs a new expression for the result (based on a template).

The compile-time language that is used for transformer-expr can be different from the
surrounding runtime language, but #lang racket seeds the language of compile-time expressions
with essentially the same language as for runtime expressions. New bindings can be introduced
to the compile-time phase with (require (for-syntax)) instead of just require, and local
bindings can be added to the compile-time phase through definitions wrapped with begin-for-
syntax.

For example, to check for verbs, things, and places statically, begin-for-syntax can define a new
typed structure:

PROGRAMMING LANGUAGES

11

(begin-for-syntax
 (struct typed
 (id ; an identifier
 type) ; a string
 #:property prop:procedure (lambda (self stx) (typed-id self))))

An identifier is written as a symbol, but with a # prefix, so that

(typed #’gen-desert “place”)

associates the binding gen-desert to the type “place”. The #:property prop:procedure clause in
the declaration of typed makes a typed instance act as a function (for reasons explained later). The
function takes one argument in addition to the implicit self argument, but it ignores the argument
and returns the typed instance’s id.

You can use typed by changing the define-place form to bind a place name id to a compile-time
typed record. At the same time, define-place binds a generated name gen-id to the runtime place
record:

(define-syntax-rule (define-place id)
 (begin
 (define gen-id (place)) ; as before
 (define-syntax id (typed #’gen-id “place”))
 (record-element! ’id id)))

Since a typed record acts as a function, a use of id expands to gen-id , so id still can be used as
a direct reference to the place. At the same time, other macros can look at the id binding and
determine that its expansion will have the type “place”.

Other macros inspect types by using a check-type macro. The implementation of check-type is
in the complete code online, but its essential feature is that it uses a compile-time function syntax-
local-value to obtain the compile-time value of an identifier; the check-type macro then uses
typed? to check whether the compile-time value is a type declaration, in which case it uses typed-
type to check whether the declared type is the expected one. As long as the type check passes,
check-type expands to its first argument.

The define-place macro uses check-typed to check whether the list of things at the place contains
only names that are defined as things. The define-place macro also uses check-typed to check
whether verbs that have responses in the place are defined as intransitive verbs:

(define-syntax-rule (define-place id
 desc
 [thng ...]
 ([vrb expr] ...))

PROGRAMMING LANGUAGES

12

 (begin
 (define gen-id
 (place desc
 (list (check-type thng “thing”) ...)
 (list (cons (check-type vrb “intransitive verb”)
 (lambda () expr))
 ...)))
 (define-syntax id (typed #’gen-id “place”))
 (record-element! ’id id)))

The define-one-verb macro must change to similarly declare each verb as either type “transitive
verb” or “intransitive verb”. The define-thing macro changes to declare its binding as a “thing”,
and it checks that each handled verb is defined as a “transitive verb”.

The code for the game with static checks is available online:

http://queue.acm.org/downloads/2011/racket/4-type/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/4-type/world.rkt
http://queue.acm.org/downloads/2011/racket/4-type/README.txt

The implementation of check-form uses syntax-case, which provides the pattern-matching
functionality of syntax-rules, but pairs each pattern with an expression rather than a fixed
template.

NEW SYNTAX
A Racket programmer who defines a custom text-adventure language for other Racket programmers
is especially likely to stop at this point. If the text-adventure language is to be used by others who are
less familiar with Racket, however, a different notation may be appropriate. For example, others may
prefer a notation such as the following from world.rkt:

#lang reader “txtadv-reader.rkt”

===VERBS===
north, n
 “go north”
get _, grab _, take _
 “take”
....
===EVERYWHERE===
save
 (save-game)
load
 (load-game)

http://queue.acm.org/downloads/2011/racket/4-type/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/4-type/world.rkt
http://queue.acm.org/downloads/2011/racket/4-type/README.txt

PROGRAMMING LANGUAGES

13

....
===THINGS===
---cactus---
 get
 “Ouch!”
....
===PLACES===
---desert---
“You’re in a desert.”
 [cactus, key]
north start
south desert
....

In this notation, instead of forms such as define-verbs and define-everywhere, sections of
the program are introduced by tags such as ===VERBS=== and ===EVERYWHERE===. Names in
the ===VERBS=== section implicitly define verbs, listing aliases afterward through a comma-
separated sequence followed by an optional description of the verb. Similarly, each name in the
===EVERYWHERE=== section implicitly defines the response to a verb; the responses are still written as
Racket expressions, but they could be in any alternate notation, if desired. Each thing and place is
defined by its own subsection, such as ---cactus---, with per-object verb responses in the same way
as in ===EVERYWHERE===.

Non-S-expression syntax is enabled in world.rkt by starting with #lang reader “txtadv-reader.
rkt” instead of #lang s-exp “txtadv.rkt”. The reader language constructor, unlike the s-exp
language constructor, defers parsing of the program’s text to an arbitrary parsing function that is
exported by the named module, which in this case is txtadv-reader.rkt. The parser from txtadv-
reader.rkt is responsible for processing the rest of the text and converting it into S-expression
notation, including the introduction of txtadv.rkt as the module language for the parsed world.rkt
module.

More precisely, a reader function parses input into a syntax object, which is like an S-expression
that is enriched with lexical-context and source-location information. It also acts as the
representation of code for macro-transformer arguments and results. The syntax-object abstraction
provides a clean separation of character-level parsing and tree-structured macro transformations. The
source-location part of a syntax object automatically connects the result of macro expansion back to
the original source; if a runtime error occurs in the code generated from world.rkt, then the error
can point back to the relevant source.

The game code with nonparentheses syntax is available online:

http://queue.acm.org/downloads/2011/racket/5-lang/txtadv-reader.rkt
http://queue.acm.org/downloads/2011/racket/5-lang/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/5-lang/world.rkt
http://queue.acm.org/downloads/2011/racket/5-lang/README.txt

http://queue.acm.org/downloads/2011/racket/5-lang/txtadv-reader.rkt
http://queue.acm.org/downloads/2011/racket/5-lang/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/5-lang/world.rkt
http://queue.acm.org/downloads/2011/racket/5-lang/README.txt

PROGRAMMING LANGUAGES

14

The parser in txtadv-reader.rkt is implemented in an especially primitive way with regular
expressions. The Racket distribution includes better parsing tools such as Lex- and Yacc-style parser
generators.

IDE SUPPORT
One of the benefits of S-expression notation is that a programming environment’s functionality
adapts easily to syntactic extension, since syntax coloring and parentheses matching can be
independent of macro expansion. Some of those benefits are intact with the new syntax for
describing a world, since the parser keeps source locations with identifiers and since the code
ultimately expands to Racket-level binding forms. For example, the Check Syntax button in DrRacket
can automatically draw arrows from the binding instance of cactus to each bound use of cactus.

DrRacket needs more help from the language implementer for IDE features, such as syntax
coloring, that depend on the character-level syntax of the language. Filling in this piece of the
sample text-adventure language takes two steps:
1. Install the language’s reader as a txtadv library collection instead of relying on a relative path
such as txtadv-reader.rkt. Moving to the namespace of library collections allows DrRacket and the
program to agree on which language is being used (without requiring project-style configuration of
the IDE).
2. Add a function to the txtadv reader module that identifies additional support for the language,
such as a module that implements on-the-fly syntax coloring. Again, since DrRacket and the module
use the same specification of the module’s language, the syntax color can be precisely tailored to the
module’s language and content.

The code for the game with a DrRacket plug-in for syntax coloring is available online:
http://queue.acm.org/downloads/2011/racket/6-color/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/6-color/world.rkt
http://queue.acm.org/downloads/2011/racket/6-color/README.txt
http://queue.acm.org/downloads/2011/racket/6-color/lang/color.rkt
http://queue.acm.org/downloads/2011/racket/6-color/lang/reader.rkt

This plug-in colors the program according to the game language’s syntax instead of Racket’s default
rules, highlighting lexical syntax errors in red.

MORE LANGUAGES
The source code of the Racket distribution includes dozens of unique #lang lines. The most common
is #lang racket/base, a stripped-down variant of #lang racket. Other common lines include #lang
scribble/manual for documentation sources, #lang racket/unit for externally linkable components,
#lang scheme for legacy modules, and #lang setup/infotab for library metadata. Most Racket
languages use S-expression notation, but scribble/manual is a notable exception; even parentheses-
loving Racketeers concede that an S-expression is a poor notation for documentation prose.

Different languages in the Racket distribution exist for different reasons, and they use Racket’s
language-creation facilities to different degrees. Racket developers do not create new languages
lightly, but the benefits of a new language sometimes outweigh the cost of learning a language
variant. These benefits are as readily available to Racket users as to the core Racket developers.

http://queue.acm.org/downloads/2011/racket/6-color/txtadv.rkt
http://queue.acm.org/downloads/2011/racket/6-color/world.rkt
http://queue.acm.org/downloads/2011/racket/6-color/README.txt
http://queue.acm.org/downloads/2011/racket/6-color/lang/color.rkt
http://queue.acm.org/downloads/2011/racket/6-color/lang/reader.rkt

PROGRAMMING LANGUAGES

15

Racket’s support for S-expression languages and language extensions is particularly rich, and
the examples in this article only scratch the surface of that toolbox. Racket’s toolbox for non-S-
expression syntax is still evolving, especially with respect to composable parsers and language-
triggered IDE plug-ins. Fortunately, Racket’s #lang protocol moves most of the remaining work out
of the core system and into libraries. This means that Racket users are as empowered as core Racket
developers to develop improved syntax tools.

REFERENCES

1. Flatt, M., Findler, R. B., PLT. 2011. The Racket Guide.; http://docs.racket-lang.org/guide.
2. �Liebgold, D. 2011. Functional mzScheme DSLs in game development. Presented at Commercial

Users of Functional Programming.
3. Ward, M. 1994. Language-oriented programming. Software – Concepts and Tools 15(4): 147–161.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

MATTHEW FLATT is an associate professor in the school of computing at the University of Utah,

where he works on extensible programming languages, runtime systems, and applications of functional

programming. He is one of the developers of the Racket programming language and a coauthor of the

introductory programming textbook How to Design Programs (MIT Press, 2001).

© 2011 ACM 1542-7730/11/1100 $10.00

http://docs.racket-lang.org/guide
mailto:feedback@acmqueue.com

